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Abstract

Recovering 3D human motion from monocular video sequences poses a significant

challenge in computer vision, particularly when the camera itself is in motion.

The ambiguity introduced by dynamic recording setups necessitates methods to

lift camera-local 3D human motions into a consistent, global world frame. This

thesis proposes a novel, modular approach to monocular multi-person motion

capture, combining regression techniques and global optimization for enhanced

accuracy.

Our pipeline for 3D motion recovery begins with image-based detection to localize

multiple human subjects within each frame. We then fit parametric human body

models (SMPL) to estimate the subjects’ 3D poses, resulting in camera-local human

pose tracks. To recover camera motion, we implement a visual odometry (VO)

algorithm. Next, we port a state-of-the-art global motion regression network to

initially lift camera-local motions into a fixed world frame. Finally, we apply a

global optimization process guided by re-projection quality, motion realism, and

motion smoothness to refine the lifted motion estimates within the global 3D world

frame.

The core contribution of this thesis is the demonstration of the effectiveness of

combining global motion regression with optimization in a chained manner. Ablation

studies confirm that this hybrid approach yields superior results compared to the

isolated use of either regression or optimization techniques. Our experimental results

show that the proposed method achieves performance closely aligned with the state-

of-the-art in SMPL-based human motion recovery.
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Chapter 1

Introduction

In this degree project the problem of recovering three-dimensional (3D) human body

structure and motion dynamics from two-dimensional (2D) cues is negotiated. In

particular, given a frame sequence shot by a monocular camera setup1, we aim to

invert the image formation process when it comes to humans and recover their body

shape and pose in world coordinates. We focus on non-static cameras whose 3D

pose (i.e. position and orientation) is considered unknown. Equivalently, the camera

is considered to be extrinsically uncalibrated.

This first chapter is started by providing relevant background in section 1.1 and

continueswith amore detailed description of the problem in 1.2. The projectmotivation

and goals follow in sections 1.3 and 1.4 respectively. The chapter is concluded with

methodological clues in 1.6 as well as the outline of the rest of this report.

1.1 Background

This degree project involves theory and methodology from the intersection of

Computer Vision (CV), Computer Graphics (CG), and Machine Learning (ML). In

particular, ML-based CV methods are vital to recognize human subjects in a video,

while Deep Neural Network (DNN) models are used to estimate the human body

silhouette and pose in 3D. Finally, in order to visualize the 3D meshes and invert the

1Monocular capturing systems are those that comprise a single camera in the recording setup. In
opposite, humans typically have binocular vision based on two eyes to perceive the three-dimensional
world.
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CHAPTER 1. INTRODUCTION

image formation process, we employ CG methods or neural2 versions of them as

explained later in the present document.

1.2 Problem

The problem of human Motion Capture (MoCap) from RGB cameras is a widely

studied problem. Existing markerless3 MoCap methods either need cameras to be

calibrated or rely on static camera setups to infer plausible body motions [42, 49, 52].

This, in turn, leads to mesh and motion recovery relative to the camera coordinate

frame. In addition, markerless MoCap methods like the ones explored in this project,

rely on 2D joint detectors as the means to fit human body meshes to the depicted

subjects. Such methods perform poorly when the cameras are moving and/or the

motions are complex-enough for the 2D detectors to fail (e.g. in the presence of self-

occlusions).

Relying on a single, uncalibrated, and non-static camera to estimate 3D human body

shape and motion in a fixed (i.e. global) coordinate system is an intrinsically tough

task. In addition to the aforementioned challenges, one can readily notice that depth

ambiguity as well as entanglement of camera and human trajectories give rise to

identifiability issues. Therefore, disambiguating camera from human motion, inferring

depth and scale, and tackling self or other occlusions are among the key challenges

for effective monocular dynamic MoCap systems.

We explore and extend recent methods that appeared in the literature and try to lift the

aforementioned limitations and challenges, both in terms of camera calibration and

monocular reconstruction [15, 50, 63]. In a nutshell, the research question investigated

in this project is: Given a monocular video, shot with a single, uncalibrated camera

depicting humans moving in the wild, can we reconstruct camera trajectory, articulated

meshes and motion in a global coordinate frame?

2Neural versions of traditional CG methods in most cases refer to modifications of them so as to be
differentiable. Differentiable rendering and rasterization are two prominent such examples [44].

3Markerless MoCap methods aim to reconstruct human body motion without using body markers
as a sparse point cloud to guide 3D reconstruction. This is opposed to Marker-based MoCap
methods which rely on those point clouds and the spatiotemporal correspondences for an accurate
reconstruction. This is accomplished at the expense of being intrusive since the body has to be outfitted
with optical markers.

2



CHAPTER 1. INTRODUCTION

1.3 Purpose

The degree project investigates methods for 3D estimation of human body shape and

motion from single-view dynamic cameras. In this context, we aspire to develop and

compare methods for single-view Human Mesh Recovery (HMR), MoCap, and camera

trajectory reconstruction.

1.4 Goal

The aim of this project is to compare existing methods for HMR andMoCap while also

propose alternations of those to account for design simplicity, resource efficiency, and

effectiveness. Recent advances of generative modeling and optimization in CV are

employed. In addition, a modular execution framework is also proposed to enable

efficient execution of multi-staged CV tasks; we focus on dynamic monocular MoCap

wherein a number of steps are involved to acquire useful 2D and 3D attributes from the

input images. The deliverables comprise the following:

- implementation and comparison of state-of-the-art (SOTA) methods for

monocular HMR

- implementation and comparison of SOTA method(s) for dynamic MoCap, i.e.

methods that do not rely on static camera setups

- combinatory extension of modern dynamic MoCap methods by incorporating

camera motion disambiguation and motion semantics

- an efficient execution framework for multi-step video processing that is based

on Execute-Transform-Load (ETL)4 design principles

1.5 Benefits, Ethics and Sustainability

Benefits The degree project benefits computer vision researchers, robotics and

autonomous systems, game and urban developers, and others by advancing

4ETL design approach focuses on modularity by decomposing the data processing pipeline
into distinct extraction, transformation, and loading functions, while leveraging libraries for data
manipulation. Additionally, it incorporates node isolation and robust error handling. Our code draws
from these concepts so as to be fully modular, re-usable and extensible while enabling parallel and
independent processing of inputs using defined execution graphs.

3



CHAPTER 1. INTRODUCTION

monocular video analysis and enabling improved understanding and capabilities in

various domains.

Ethical Concerns Privacy and informed consent are important ethical considerations

when dealing with videos of humans. Respecting privacy rights and obtaining proper

consent are crucial in the project. This mainly comes down to data collection

and publishing agreements, alongside proper acknowledgement and redistribution

statements.

Sustainability Aspects The project promotes sustainability by utilizing existing

monocular video data, reducing the need for specialized equipment, and optimizing

resource efficiency. The outcomes have potential applications in surveillance, robotics,

and human behaviour modelling, contributing to sustainable technologies and

solutions.

1.6 Methodology

The project can be split into three parts: recovery of human meshes, camera

trajectory estimation, and global motion optimization. This split corresponds with

recent literature trends, wherein one can found multiple disjoint studies along those

areas. The input modality comprises monocular videos; therefore those estimation

tasks are mostly executed per frame while some works also exploit inter-frame

relations. In Figure 1.1 we supply a schematic of the path we follow towards extracting

3D human tracks from monocular inputs. This can readily be split into five parts: i)

detection and tracking in 2D, ii) estimation ofmesh-model parameters in camera frame,

iii) estimation of camera trajectory, iv) initial regression of global human tracks and v)

optimization of global tracks by leveraging learned humanmotion dynamics. The latter

two comprise the denoted Global Human Motion Recovery stage.

Recovering human body mesh from 2D images has been thoroughly investigated.

Sparse 2D keypoints corresponding to skeletal joints are regressed from the images

to either directly fit a human 3D mesh [10, 29] or train a neural network to output the

parameters of a parametricmeshmodel, such asSMPL [38]. As is the norm in literature,

we also employ parametric models throughout this project, i.e. instead of regressing

the mesh vertices directly, we estimate a set of parameters lying at a manifold of

4



CHAPTER 1. INTRODUCTION
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MULTI-HUMAN
TRAJECTORIES

 
HUMAN 

MESH
ESTIMATION

CAMERA 
ESTIMATION

GLOBAL 
HUMAN 
MOTION 

RECOVERY

Figure 1.1: Pipeline of the methodological steps followed to extract 3D human shape
and motion from monocular videos.

significantly lower dimensionality than the number of vertices. Numerous methods

have been proposed to estimate parameters of such models from a single image; we

explore some of those that use DNN with convolutional and attention layers.

Estimating camera poses fromamonocular video is a fundamental problem in robotics

and is tackled by either using Simultaneous Localization and Mapping (SLAM) or

Visual Odometry (VO) odometry methods. In either case camera trajectory is explicitly

inferred in a fixed world frame. Some HMR methods have also explored implicitly

learning camera placement, by jointly optimizing it along meshes for plausible human

motions [65]. Following modern methods for global motion recovery, however,

we opted for explicitly estimating camera extrinsic sequence, denoted as Camera

Estimation in Figure 1.1.

Motion estimation accounts for regressing global mesh pose and local (i.e. relative,

based on the kinematic tree) joint transformations at each frame. The former is used

to correctly place the mesh in the world coordinate frame, while the latter is necessary

to produce the (parametric) human mesh and its motion. Global mesh recovery and

motion estimation literature is somewhat limited as, especially for monocular cues,

this is a fairly new direction. Twomajor works in this area areWHAM [50] and SLAHMR

[63]. We extensively use WHAM as our baseline since its architecture allows for DNN-

based regression of global human motions. SLAHMR has some quite inclusive and

generic optimization assumptions that we also explore in this project, towards hybrid

regression-optimization global HMR. Both such prior works employ visual SLAM

to estimate camera trajectory from static scene background pixels [53, 54], which

resonate our option to do likewise.

5



CHAPTER 1. INTRODUCTION

1.7 Delimitations

One of the main limitations of our work is the time and computational constraints. In

particular, some of the employed methods require multi-GPU and multi-hour training

or inference runs. We instead choose to downscale such techniques to enable training

in academic hardware and reasonable time. Another limitation is the use of hand-

crafted objectives for the optimizationmethods employed (based on SLAHMR). Future

directions of this work could focus on offsetting the optimization scheme in neural

networks that would learn to combine the error sources in a task-optimalmanner.

1.8 Outline

The presented material is split in the following chapters:

- Chapter 2: Background of the tasks and methods used towards regressing

human tracks in world coordinates is given. There, we explain methods for

regressing useful 2D attributes, such as human detection and tracking, as well

as 3D ones, including depth and mesh parameters estimation. We also present

the chosen parameterization of the human body in 3D, and method for inferring

camera trajectory directly from input pixels.

- Chapter 3: Methodology is laid for inferring human motion. This is split into

camera-local and global motion recovery but is also clustered based on the

chosen optimization approach: either DNN-based regression or optimization

of hand-crafted objectives. This is a necessary foundation towards explaining

our approach on hybrid regression-optimization HMR, i.e. combining regressive

methods with motion-based optimization constructs.

- Chapter 4: In this fourth chapter we explain our developed system. This

comprises the ETL-like execution framework to infer needed quantities, and the

regression and the optimization steps of global human tracks. Our contributions

on the existing methods as well as the dataset on which our experiments are

performed, are also presented in this chapter.

- Chapter 5: Followingly, we present quantitative and qualitative results of our

approach. This includes visualization of the intermediate extracted quantities,

as well as visualizations and metrics of the regressed human meshes in 3D. The

6



CHAPTER 1. INTRODUCTION

corresponding metrics of literature methods are also given in this chapter.

- Chapter 6: This document is finalized by conclusive comments and remarks on

future extensions.

7



Chapter 2

Extracting Information from Pixels

In this chapter, an overview of generic HMR methodology is presented, followed by a

review of recent works on monocular human body shape and pose estimation, and

camera trajectory regression. We focus on the SOTA works Reconstructing World-

grounded Humans with Accurate 3D Motion (WHAM) for initially regressing global

human tracks, and Simultaneous Localization andHMR (SLAHMR) that combinesmesh

recovery, camera pose estimation, global placement and disambiguation.

As those methods rely on estimating various cues from the input frames, we begin

this chapter by describing monocular visual learners, i.e. deep models that estimate

pixel-wise 2D attributes, necessary for the subsequent stages. We then proceed by

describing SMPL, the chosen representation for humans in 3D, as well as monocular

estimation and tracking of SMPL-based meshes. The chapter is finalized by reporting

modern ways to regress global human motion in 3D from monocular inputs.

2.1 Monocular Estimation of 2D Attributes

With the termmonocular we refer to the inputs being 2D cues shot by a single camera.

Therefore, no other information, such as depth or stereo, is assumed present. We

start this section by describing the chosen methods for human subject detection and

pixel-wise segmentation, appearance-based tracking, and 2D pose estimation, on the

input frames. Those are necessary intermediate steps towards isolating humans and

followingly estimate relevant 3D attributes.

8



CHAPTER 2. EXTRACTING INFORMATION FROM PIXELS
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Figure 2.1: SOTA object detection methods on COCO test set. We opted for the current
best performing model, Co-DETR, in terms of mean Average Precision (mAP).
Source: Papers with code (image taken February 2024).

2.1.1 Object Detection

Object detection is a branch of CV that deals with identifying and locating objects in

images by means of class and object bounding box prediction respectively. This is the

first operation on the input pixels, with its accuracy being crucial for the performance

of the overall performance of the developed system. One can readily see that missing

detection of necessary objects at this stage, there is small chance that those be

recovered later on.

Given its importance, we opted for the SOTA object detection model, Co-DETR [67], as

evaluated using the mAP metric in the wide and diverse dataset of real-world objects

in context, COCO [35]. In Figure 2.1, we list object detections methods appeared in

the literature and highlight the chosen one. To calculate mAP, the overlap between

each predicted bounding box and the corresponding ground truth bounding box is

determined combined with the area under curve (AUC) for the object class predictions

and corresponding ground-truth classes. mAP takes values from 0.0 to 1.0 with higher

values corresponding to more accurate bounding box and class detections.

DETR, proposed by Carion et al. in the work End-to-end object detection with

Transformers [7], is a very successful model in object detection. As can be seen

in Figure 2.2, DETR starts by extracting image features using a Convolutional

9
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Transformer 
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Figure 2.2: Direct predictions of bounding boxes and class probabilities by DETR, using
global attention layer to input image features.
Source: End-to-end object detection with Transformers, Carion et al. [7]
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Figure 2.3: Complementary and dense error signals from additional decoding heads in
Co-DETR, help boost learned embeddings by the DETR encoder during training.
Source: DETRs with Collaborative Hybrid Assignments Training, Zong et al. [67]

Neural Network (CNN). The transformer [56] encoder then processes these features,

understanding the relationships between different parts of the image. It directly

predicts a fixed set of objects and their bounding boxes, unlike traditional models that

rely on complex hand-designed components. Finally, it performs one-to-one (bipartite)

matching between predictions and ground truths and update the convolutional and

attention weights based on this comparison.

DETR, suffers from sparse supervision in both its encoder and decoder. One-to-

one matching of predictions to ground truth limits the learning signals, hindering

feature representation learning in the encoder and attention learning in the decoder.

Depicted in Figure 2.3, Co-DETR [67] extends DETR during training, by introducing

auxiliary detection heads that run parallel to the main DETR attention heads, that

leverage ”one-to-many” label assignment strategies (fromFaster R-CNN [14]) to provide

complementary dense error signals and thus boost the encoder’s ability to extract

discriminative features.

10
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Figure 2.4: SOTA instance segmentation methods on COCO test set. We opted for the
one of the current best performing models, ConvNext v2, in terms of mask-mAP.
Source: Papers with code (image taken February 2024).

2.1.2 Instance Segmentation

While object detection focuses on regressing bounding boxes around identified

objects, instance segmentation goes a step further and estimates a dense pixel-

based mask isolating the identified objects in the input image. Instance segmentation

is essential as it not only allows us to distinguish between the foreground and the

background pixels corresponding to an object, but also help us identify different

objects within the same original bounding box, even if those are of the same class.

The way instance segmentation methods work is by determining the the class at pixel-

level, i.e. for every pixel it estimates the probability of it belonging to any of the pre-

defined object classes. This way, objects in the image can have rich outlining alongside

the detected bounding box and class, enabling a wider spectrum of downstream

tasks.

We segment instances of humans in the input frames, a step necessary towards

isolating the apparent texture of every human subject at every timestep in the input

video. Those textures are then aggregated and used towards improving and stabilizing

human tracking during the visible frames, as will be explained in detail later on this

document. Given the sensitivity of the aforementioned task to pixel-wise human

masks, we chose to use one of the best-performing instance segmentation model in

11
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Figure 2.5: Comparison of the blocks of modern CNN models. As can be seen,
ConvNext v2 highly resembles the successful ResNet [18] blocks, extending them with
larger convolutional kernels and more efficient normalization layers inspired by the
SwinTransformer [36].
Source: ConvNext v1 paper [37], and ConvNext v2 paper [60]

the COCO test set, ConvNext v2, as can be seen in Figure 2.4.

ConvNext v2, presented by Woo et al. [60] marks the SOTA method in instance

segmentation among the ones using exclusively CNN as building blocks. Being

inspired by Transformer in its design as well as leveraging depth-wise convolutions,

novel normalization techniques, and the masked autoencoder (MAE) pre-training

framework, it is able to learn powerful visual representations used in the downstream

segmentation task. A schematic of the architecture is provided in Figure 2.5.

2.1.3 Object Tracking

Object detection and instance segmentation both occur at image-level, i.e. each frame

in the video is processed independently from the neighboring ones in the input video.

As a result, there is no notion of instance tracking and therefore every detection

is assigned a different tracking id at every timestep or frame index. However, we

can straightforwardly apply tracking-by-detection, a dominant paradigm in computer

vision for tracking multiple objects in videos, which uses an association algorithm that

12
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Figure 2.6: Extending DeepSORT by using regressed UV texture maps instead of CNN-
based appearance embeddings. The maps are enriched through time via aggregation.
Source: Tracking people by predicting 3D appearance, location and pose by
Rajasegaran et al. [43]

takes new detections and links them with existing object tracks from previous frames.

Different linking strategies exist; we focus on the widely popular and flexible method

DeepSORT which in turn builds upon the SORT tracking framework.

SORT (Simple Online and Realtime Tracking) [4] presented by Bewley et al., uses a

Kalman filter to predict the future positions of detected objects based on their previous

movement patterns. It then associates new detections with existing tracks primarily

based on Intersection over Union (IoU), a measure of overlap between predicted and

detected bounding boxes. SORT focuses on simplicity and efficiency, which makes it

operate fast, but with the downside of suffering in the presence of occlusions (i.e. it

fails to correctly re-identify objects).

DeepSORT [59] presented by Wojke et al., integrates appearance information to

improve the performance of SORT and enable tracking objects through longer periods

of occlusions, effectively reducing the number of identity switches. To do this,

DeepSORT obtains a vector for every image patch, by passing it through a pretrained

image classifier and getting the output of the last convolutional layer. These

”appearance embeddings” are used in the association metric to help re-identify lost

objects due to occlusions or out-of-frame motions. Rajasegaran et al. [43] extend

DeepSORT by incorporating richer embeddings; when it comes to appearance those

comprise aggregated UV texture maps as depicted in Figure 2.6.
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Figure 2.7: SOTA human pose estimation methods on COCO Keypoint test set. We
opted for the current best performing model, ViTPose, in terms of joint location mAP.
Source: Papers with code (image taken February 2024).

2.1.4 Human Pose Estimation

Another very useful modality that can be directly estimated from input images is the

2D position of human joints, as those can be used to constrain the optimization of 3D

human body shape and camera pose. Given datasets with manual such annotations,

manyDNNmodels have been proposed to regress those positions from images. Again,

we opted for the current best performing model, VitPose, as can be seen for the SOTA

human pose estimation chart in Figure 2.7.

ViTPose presented by Xu et al. [62] is a family of models that establishes Vision

Transformer (ViT) as remarkably effective backbones for human pose estimation.

Instead of traditional CNN, ViTPose leverages plain, non-hierarchical ViTs to extract

image features, coupledwith a lightweight decoder for pose estimation, a schematic of

which is given in Figure 2.8. Its scalable design offers a new performance-throughput

trade-off within pose estimation, achieving excellent results on the COCO Keypoint

dataset. We use VitPose to extract 2D joint locations of detected humans, and

compare themwith projected 3D joint locations coming from the estimated 3D human

meshes.
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Figure 2.8: (a) The encoder-decoder architecture of ViTPose. (b) The transformer
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2.1.5 Gender Estimation

Gender plays a vital role in human body shape and pose-dependent shape deformation,

as different genders tend to have larger offsets in the chests and hips areas and shifted

average heights (at least for the scanned bodies used to train mesh regressors that

are employed in this project). While some datasets provide ground truth genders for

the depicted subjects, we opted to estimate gender independently for every detected

human, in an effort to make the entire pipeline more flexible and realistic. Alternatively,

one could have chosen to develop gender-agnostic HMR systems, that are usually

implemented using an average, neutral, human mesh template, that hurts the fidelity

of the generated meshes and motion.

We use a modern model for gender and age estimation from images, MiVOLO,

presented by Kuprashevich and Tolstykh in [31]. As shown in Figure 2.9, MiVOLO

leverages ViTs as backbones to extract useful representations from images containing

the isolated body and the cropped face (of the same person), and accurately estimate

age and gender. Being trained with challenging ”in the wild” datasets, it exhibits good

generalizability; we found that it is biased towards male gender predictions when

evaluated on the human motion estimation dataset we used in this project.
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Figure 2.9: MiVOLO overall (left) and feature enhancer (right) architectures. The image
features are early-fused in the Feature Enhancer using cross-attention, before being
processed from another ViT-based backbone, VOLO [64]. The final prediction heads
output the age and gender probabilities respectively.
Source: Multi-input Transformer for Age and Gender Estimation, Kuprashevich and
Tolstykh [31]

2.2 Modelling Human Body In 3D

Three-dimensional human body shape models offer compelling advantages, allowing

us to infer a subject’s shape from incomplete or ambiguous 2D/3D data. The ultimate

goal is to simulate humans comprehensively, including bones, joints, muscles, tissues,

and skin [19]. However, practical limitations often restrict us to scanning the outer

body surface with 3D scanners. Those scans have been used to develop statistical

models that are easy to use and accurately represent the diversity of human forms. To

represent the skin surface, a water-tight mesh1 is employed.

Two broad categories of representations exist for creating 3D humans. The first

directly manipulates the mesh itself, while the second, relies on a lower-dimensional

set of parameters to control the final mesh. Estimation methods follow a similar

1Amesh is a fundamental data structure in computer graphics for representing the shape and surface
of 3D objects. It consists of vertices, edges, and faces.

16



CHAPTER 2. EXTRACTING INFORMATION FROM PIXELS

Encoder

Template Mesh Output Mesh

Attach image features
in the graph

Input: Image features ⊕
template 3D coordinates

(xt
i , yt

i , zt
i )

xt
j , yt

j , zt
j

. . .

Graph CNN

Per-vertex feature vectors Regressed 3D vertex
coordinates

Output: 3D vertex coordinates

(x̂ i , ŷi , ẑi )
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Figure 2.10: Overview of GCN for humanmesh estimation. First, a CNN extracts image
features, integrating them with a template 3D human mesh. Then GCN is employed to
directly deform the mesh, matching it to the person in the input image.
Source: Convolutional Mesh Regression for Single-Image Human Shape
Reconstruction, Kolotouros et al. [30]

division: some directly generate mesh vertices, while others produce a set of

parameters that are then used to construct the mesh. Following standard practice

in the literature, we focus on the latter parameter-based approach for 3D human

modeling. However, for completeness, this section starts with a brief description of

a prominent method from the direct mesh manipulation category.

2.2.1 Direct Mesh Estimation

One of the prominent methods to directly edit the human mesh to match the shape

of humans depicted on the input images is the work by Kolotouros et al. named

Convolutional Mesh Regression for Single-Image Human Shape Reconstruction [30].

The proposed architecture directly regresses the 3D coordinate offset of vertices on

a template mesh. They achieve this using a Graph Convolutional Network (GCN)

architecture. The GCN leverages the inherent structure of the mesh for more effective

processing of image features, which are fused with the mesh vertices.

This framework allows for flexible 3D shape reconstructionwithout a rigid reliance on a

predefined parametric bodymodel. The latter howevermay also be seen as a drawback

of this cluster of methods, as it allows non-plausible vertex deformation, as can be

seen in Figure 2.11 where the output of the aforementionedmodel is comparedwith the

output of the SMPL parametric-mesh model described in the next sub-section.
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Regressed shape Parametric shape

vs.

Figure 2.11: Poor fitting of the human mesh by regressing on the vertex-level (left).
Instead, parametric human modals only allow plausible mesh fits (right).
Source: Convolutional Mesh Regression for Single-Image Human Shape
Reconstruction, Kolotouros et al. [30]

2.2.2 Parametric Models

Instead of directly regressing mesh vertices, a number of techniques have been

proposed that operate on a low-dimensional manifold of mesh parameters [38, 61].

Those are used by developed mesh regressors to produce the final vertex set, and

usually a set of 3D joint locations found internally. In this project we make use of the

widely popular parametric mesh model, SMPL, which is described next.

The SMPL Model Family

Loper et al. presented in their paper SMPL: A Skinned Multi-Person Linear Model [38]

a learned model of human body shape and pose-dependent shape variation from 3D

scans, which parameterizes the skin mesh using a set of body shape parameters and

joint angles (of an underlying skeleton). The parameters are typically named ~β and ~θ

respectively and are used to linearly blend a template mesh in rest (T-) pose, T , with

a set of learned shape-dependent and pose-dependent vertex deformations (or blend

shapes). The ”blended” mesh is then posed based on the ~θ parameters using a set of

learned skin-to-joints influenceweights,W and Linear Blend Skinning (LBS)2. As can be

seen in Figure 2.12,W learns an association between each vertex and different bones,
2LBS is a fundamental skinning technique where each vertex on a 3D mesh is transformed by a

weighted combination of nearby bone transformations. The SMPL model employs LBS to articulate its
mesh based on joint rotations (pose parameters) and corrective blend shapes (shape parameters).
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(a)  T, 𝓦¯ ¯(c)  Tp(β, θ) = T + Bs(β) + Bp(θ) (d)  W(Tp(β, θ), J(β), θ, 𝓦)(b)  T + Bs(β), J(β)¯

Figure 2.12: The SMPLmodel. (a) Templatemeshwith blendweights indicated by color
and joints shown in white. (b)With identity-driven blend shape contribution only; vertex
and joint locations are linear in shape vector ~β. (c) With the addition of of pose blend
shapes in preparation for the split pose; note the expansion of the hips. (d) Deformed
vertices reposed by blend skinning for the split pose.
Source: SMPL: A Skinned Multi-Person Linear Model, Loper et al. [38]

enabling smooth deformations as the model is posed or its shape is altered.

Described by the low-dimensional parameter set of ~β (usually 10 Principal Component

Analysis (PCA) coefficients) and ~θ (23×3 joint angles in axis-angle representation,

describing the orientation of each of the 23 joints in SMPL’s kinematic tree), the model

can produce a sufficiently wide spectrum of human body pose and shape variations,

as exemplified in Figure 2.13. In addition, as the final mesh is created using blend

skinning, SMPL is compatible with existing graphics pipelines and can be readily used

in all modern 3Dmodeling software, such as Blender [9] and AutodeskMaya [2], linking

ML-based mesh estimation methods to existing animation tools. We employ SMPL as

the sole model for regressing humanmeshes in this project; for every detected human

in the each video frame we thus have to estimate its corresponding SMPL parameters,

a process analyzed in 2.3.2.

2.3 Monocular Estimation of 3D Attributes

Multiple methods have appeared in literature that aim to regress 3D quantities directly

from 2D cues. In particular, we focus on ones estimating SMPL parameters, SMPL

mesh textures, likelihood of vertex contact as well as (relative) depth directly from

pixels. We analyze the methods used in this project in the rest of this section starting

from monocular depth estimation.
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β

θ 

Figure 2.13: Decomposition of SMPL parameters into pose and shape: Shape
parameters, ~β, vary across different subjects from left to right, while pose parameters,
~θ, vary from top to bottom for each subject.
Source: SMPL: A Skinned Multi-Person Linear Model, Loper et al. [38]
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2.3.1 Depth Estimation

Monocular depth estimation is a fundamental computer vision problem concerned

with the reconstruction of 3D scene depth from a single 2D image. Due to the

inherent ambiguity of inferring depth from a monocular view, this task necessitates

the combined use of visual cues (e.g., relative size, defocus, and parallax) with

sophisticated machine learning algorithms that provide depth priors. We employ

depth estimation in this project in order to enhance the performance of camera pose

estimation, as depth information is needed to find correspondences among image

patches between two consecutive frames. For this reason, it suffices for our task

to just know the ordering of the pixels, i.e. the depth ”bin” that each pixel falls into,

which is commonly referred to as relative depth estimation (in contrast with absolute

depth estimation which is the metric depth distance of every pixel back-projected to

the world).

The chosen method to estimate depth from input images is Marigold, presented by

Ke et al. in their work Repurposing Diffusion-Based Image Generators for Monocular

Depth Estimation [25]. In contrast to traditional methods that directly regress absolute

depth values, Marigold adopts an approach focused on estimating relative depth

relationships between image pixels. Marigold exploits the rich visual knowledge

embedded within large generative models like Stable Diffusion [47] instead of directly

predicting depth maps. In particular, the authors propose a latent diffusion model3

3Latent Diffusion Models employ an autoencoder so as to enable training and inference in the latent
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that is trained on purely synthetic image-depth latent pairs. Fine-tuning Marigold on

synthetic data further refines this capability, resulting in a computationally efficient

model that produces accurate depth estimates. This unique adaptation of diffusion-

based image generators demonstrates the potential to unlock their latent scene

understanding for tasks beyond image creation.

2.3.2 Estimation of SMPL Parameters

Estimating the parameters that generate the SMPL mesh from a single image is a

difficult, though very rewarding task. As such, a number of techniques with relying

on minimization of mesh re-projection fidelity criteria. In most cases the criterion is

joint re-projection error, i.e. how far are the projected SMPL joints from the provided

(or detected as described in 2.1.4) ones. Additionally, some methods have proposed

to maximize the realness of the 3D pose in order to discourage unlikely complex mesh

placements. In any case, it is important that the reader realizes that this estimation

results in camera-local placement of the meshes in 3D. As it will be explained later,

this is fine if the camera is static (fixed in the world) but poses quite some challenges

in dynamic recording setups.

Having robust estimates of the parameters of the human mesh for every detection

is crucial, and therefore we chose to use the SOTA model (pretrained) for monocular

estimation of SMPL parameters, HMR 2.0 presented by Goel et al. [15]. As shown

in Figure 2.15, HMR 2.0 utilizes ViT backbones to extract useful embeddings from

cropped image patches, that are then used in a ViT decoder which outputs the

regressed SMPLparameters aswell as the camera translation in theworld. The latter is

not robust andmostly wrongwhen the camera is not static, based onwhich we neglect

this part of themodel’s output (we assume dynamic recording setups). We now have a

way to estimate camera-local SMPL meshes for every detected human bounding box

and at every frame. Followingly, we describe how the extracted mesh information is

combined to make the tracking of human subjects more robust.

space of it. This way they are much more computationally efficient while also showcasing improved
performance.
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Figure 2.15: HMR 2.0, a fully ”transformerized” version of a network for Human Mesh
Recovery.
Source: Humans in 4D: Reconstructing and Tracking Humans with Transformers, Goel
et al. [15]

2.3.3 Human Tracking in 3D

In 2.1.3 the object tracking problem was presented along with DeepSORT [59], a

flexible architecture for efficient object tracking and re-identification. It was then

mentioned, that by construction DeepSORT can incorporate additional cues in the

matching process (of new detections to the existing tracks). PHALP presented by

Rajasegaran et al. [43], is a DeepSORT-based tracker that incorporates the following

additional attributes to make the tracking more robust:

• pose: flattened vector of the 23 regressed joint angles from SMPL

• location: camera and pelvis translations from the world origin (or relative pelvis

translation in the case of moving cameras)

• appearance: flattened UV-texture maps regressed by projecting SMPL meshes

to the input image and picking colors at pre-defined vertex indices.

PHALP is the default tracker used by Goel et al. [15] after employing HMR 2.0 to

estimate SMPL parameters; we follow the same approach in this project as well to

derive camera-local human tracks.

2.3.4 Estimation of Contact Points

Humans interact with the world via touching, walking, sitting etc., all of which have

contacts between outer skin and scene surfaces in common. As such, having contact
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Figure 2.16: PHALP extends DeepSORT by incorporating SMPL pose, location, and
appearance information to boost tracking performance.
Source: Tracking People by Predicting 3D Appearance, Location and Pose,
Rajasegaran et al. [43]

heatmaps on top of SMPL vertices directly from 2D cues can be really helpful as

it enables more physically-plausible placement of the human body meshes in 3D.

In addition, contact information helps preventing the well-known floor penetration

problem prevalent in monocular SMPL estimation techniques [55].

Huang et al. presented in their work entitled Capturing and Inferring Dense Full-Body

Human-Scene Contact [21] amodel for estimating per/vertex contact probabilities from

images, BSTRO, along with a dataset with SMPL meshes and contact probabilities

aligned to visual cues, RICH. As can be seen in Figure 2.17, BSTRO is able to provide

accurate contact heatmaps even for occluded vertices or complex poses of the fitted

mesh. This is accomplished by training a ViT backbone on the SMPL template mesh

along with regressed SMPL parameters, to correctly classify each vertex as being in

contact. In this project we use BSTRO (pretrained) to get possible points of contact

between the regressed bodies and the scene surfaces. We focus mainly on the feet,

as knowing whether they touch the ground is a necessary cue to encourage realistic

placement and motion of the body in the world frame. Feet contact probabilities are

also employed in the WHAM method for global human track regression (presented in

the next chapter).
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Figure 2.17: Input images and predicted SMPL vertex contacts from the BSTROmodel.
BSTRO can successfully capture contacts even for unseen body parts. The images are
from the RICH dataset presented along with the aforementioned model.
Source: Capturing and Inferring Dense Full-Body Human-Scene Contact, Huang et al.
[21]

2.4 Monocular Estimation of Camera Trajectory

One of the main assumptions or challenges of the work presented in this document

is that the cameras need not be fixed nor extrinsically calibrated. Therefore, in order

to globally place the regressed human meshes, we need to estimate the pose of the

camera as well. A number of methods have been proposed to deal with this inherent

ambiguity, either implicitly [65], or explicitly [50, 63] by incorporating a camera trajectory

estimation stage. This section focuses on the latter, i.e. the problem of regressing a

sequence of camera poses in a fixes world frame is negotiated.

Visual-SLAM and VO address this fundamental problem in robotics of determining an

agent’s as well as the camera pose within an environment from visual cues; we focus

exclusively on the camera hereby. While VO incrementally estimates the camera’s

trajectory by analyzing changes between consecutive image frames, SLAM tackles the

more expansive task of building a persistent map of the environment in concurrence

with self-localization. In essence, SLAM augments VO’s trajectory estimation with

the ability to recognize previously visited locations and refine the understanding of

the spatial environment making it significantly more computationally expensive. As

such and based on findings of previous works [63], we employ VO methods in this
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project to maintain its ability to run in resource-constrained environments, focusing on

its modern take, patch-based VO described next.

2.4.1 Patch-based Visual Odometry

Patch-based VO departs from traditional feature-based VO methods. Rather than

exclusively relying on distinct keypoints like corners, patch-based methods extract

small image regions (patches) and track their movement across frames. These

patches often contain richer texture information than isolated keypoints, potentially

improving robustness in scenarios with repetitive textures or low feature density.

Patch-based approaches often leverage advanced techniques like deep learning-based

patch descriptors to compute similarity between patches in different frames, aiding in

the estimation of camera motion. Hereby we employ the SOTA method DPVO.

DPVO, presented by Teed et al. in their work Deep Patch Visual Odometry [54],

revolutionizes patch-based visual odometry by introducing deep learning and a

recurrent architecture. Its core involves a residual network for extracting descriptive

patches from images, coupled with a recurrent network that dynamically tracks these

patches over time. The camera pose is then estimated using differentiable version

of a bundle adjustment [6] layer, where the objective is to minimize the re-projection

error of the tracked patches in a recurrent fashion as depicted if Figure 2.18. This

unique combination leads to a computationally efficient and highly accurate model

that outperforms prior patch-based and dense visual odometry techniques.

1D-Conv Soft-Agg Transition

Factor
Head

BA

Corr

(k, 2)

(k, 2)

(k, 384)

n   - # frames
m - # patches
k   - # edges

patch graph
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Figure 2.18: Recurrent update operator of DPVO. Correlation features are extracted
from temporally neighboring patches (based on a patch-to-frame graph) and injected
into the hidden state. Then, the hidden state is processed by convolutions and a
transition block. The factor head produces camera trajectory revisions which are used
by the bundle adjustment layer to update the camera poses and the depth of patches.
Each ”+” operation is a residual connection followed by layer normalization [3].
Source: Deep Patch Visual Odometry, Teed et al. [54]
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Human Motion Recovery

The first step in the process of global human motion recovery from videos is

detecting and identifying the human subjects depicted throughout the given frames.

Subsequently, the parameters of SMPL models are regressed resulting in realistic

3D human bodies that, at best, are consistent with visual cues up to a projective

transformation [17]. When the camera parameters (mostly the extrinsic ones) are

unknown an additional processing step is taken in order to resolve the inherent

ambiguity between body and camera motion. Methods for tackling all these steps

directly from the input images were presented in chapter 2.

In this chapter we focus on another aspect of human motion recovery, that of

regression- vs. optimization-based processing of both camera-local and global tracks,

and describe each through related literature works. This is necessary in order to lay

the foundation and introduce the reader to our approach, which is a hybrid regression-

optimization one. For clarity matters, we repeat here the aforementioned ways

of clustering HMR methods based on operational domain, method mechanics, and

literature trends:

- Local vs. Global Camera-local methods assume that the camera is placed at

the world origin and therefore all the inferred meshes are relative to the camera

pose. In contrast, global methods focus on the discovery of both the camera and

the mesh pose relative to a fixed world frame of reference (see Figure 3.1).

- Regression vs. Optimization Regression-based methods usually employ DNN

architectures that are trained in maximum likelihood manner to directly estimate

the mesh parameters. This is in contrary to optimization-based methods where
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Camera View (local) World View  (global)

Figure 3.1: Visualizing camera-local (center) and global placement (right) of SMPL
meshes regressed directly from the input image (left).
Source: PACE: Human and Camera Motion Estimation from in-the-wild Videos,
Kocabas et al. [27]

an initial guess of the mesh parameters is iteratively refined by minimizing some

prescribed objectives as depicted in Figure 3.2 (bottom).

3.1 Local Motion Recovery

Local HMR accounts for the estimation of human meshes in a camera-based

coordinate systemwith the camera itself usually lying at the origin. When operating on

such a space it is impossible to accurately infer humanmotion as camera movements

directly appear as translations of themeshes, except fromwhen the cameras are static,

fixed, in the world. In the latter scenario, the human motion can be correctly estimated

up to a translational or similarity (i.e. scaled euclidean) transformation. As we focus

on dynamic recording setups in this project, however, camera-local inference of the

SMPL meshes can only act as an initial step; after inferring camera pose an additional

disambiguation task is required for (at least) plausible global motions.

3.1.1 Regression Based Methods

In 2.3.2 the SOTAmethod for camera-local HMRwas presented. This uses an encoder-

decoder architecture based on ViT, and therefore it estimates the SMPL parameters

in a single inference step. As such, HMR 2.0 is categorized as a regression-based

method. In general, all methods that estimate SMPL parameters using visual learners

fall in this category, and usually have an image encoding and an SMPL decoding

network as depicted in Figure 3.2 (top). The main advantage of these techniques is

their efficiency; the parameter estimates are produced in a matter of ms (modern GPU

time) as a single forward pass through the learner usually suffices.
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Figure 3.2: Schematic of the generic paradigms of regression-based (top) and
optimization-based (bottom) methods to estimate SMPL parameters given a
monocular image as input.
Source: Images are taken by the work of Kolotouros et al., Learning to Reconstruct 3D
Human Pose and Shape via Model-fitting in the Loop [28]
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3.1.2 Optimization Based Methods

While methods that directly regress mesh or model parameters operate with high

efficiency they are known to produce implausible or erroneous fits, especially when

those are projected to the input image [5, 42]. One prominent such example is that

projected joints of camera-local regressed SMPLmeshes tend to have a constant bias

from the 2D keypoints that are provided (or estimated, see 2.1.4) [28]. Therefore, a

number of techniques have been presented that iteratively enhance an initial estimate

of SMPL parameters in order to derive plausible and re-projection-consistent human

meshes, the most popular of which are described below.

SMPLify [5] was among the first methods to successfully optimize SMPL mesh

parameters towardsminimizing a re-projection objective. In particular, it used a CNN to

estimate 2D keypoints of the human joints, which were then used to provide the SMPL

update direction: the mesh parameters were altered so as to minimize the difference

between the projection of the posed SMPL model joints and the detected keypoints.

In addition, the authors proposed a inter-penetration criterion to prevent impossible

poses due to self-penetrating body parts. The main drawback of this method, is its

high sensitivity to the mesh initialization, as well as its proneness to local minima (as

is always the case with gradient based optimization).

SPIN [28] builds on SMPLify and improves the initial state of the optimization by

training a regression-based network of SMPL parameters from the input image. More

specifically, the model employs a CNN trained to predict the SMPL shape parameters,
~β and joint rotations, ~θ directly from the pixels. While this network produces meshes

with the problems noted on the previous subsection, its output is still a much better

initialization point for SMPLify than the 2D pose keypoints. Then, SMPLify iteratively

refines the parameters to minimize the re-projection error. The process is repeated

by feeding the optimization output back as input until the optimization procedure

yields negligible modification. SPIN, though more computationally intensive, it yields

significantly better results than SMPLify with pose-based initialization. The entire

pipeline is depicted in Figure 3.3. In this project, we draw significant inspiration

from SPIN’s core idea in this project; we expand this concept to global human

tracks estimation by combining a regression based with an iterative optimization

method.
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Figure 3.3: SPIN trains a deep network for 3D human pose and shape estimation
through a tight collaboration between a regression-based and an iterative optimization-
based approach. During training, the network predicts the SMPL parameters

(
~β, ~θ

)
reg
,

which are used to initialize SMPLify, the iterative optimization routine that fits themodel
to 2D keypoints, deriving the updated parameters,

(
~β, ~θ

)
opt
.

Source: Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the
Loop, Kolotouros et al. [28]

3.2 Global Motion Recovery

While camera-local motion recovery deals with estimating mesh motions relative to

the camera coordinate system, global HMR focuses on placement of the meshes (and

the camera) in a fixed world frame. As the sole input to the system is a video shot by

(a potentially moving) monocular camera, estimating the local human tracks is almost

inevitably a starting point due to the intrinsic difficulty of simultaneous regression of

global mesh and camera parameters. Therefore, in order to estimate global human

motion, an extra step is needed, that of ”lifting” the camera-based motion to the world

coordinates.

Figure 3.4 is an updated version of the initial schematic of our approach (see Figure

1.1) where the separate stages of camera estimation, local mesh regression, and

global motion recovery are visible. We begin this section by describing WHAM, a

recent regression-based approach that tackles the local-to-global lifting problem, while

followingly the SLAHMR optimization-basedmethod for the same task is presented. In

this project, both of those methods are employed as described in the corresponding

subsections.
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Figure 3.4: Increased level of detail of the schematic of our developed pipeline,
underlining the distinct steps dedicated to camera pose estimation, camera-localmesh
regression, and global motion recovery.

3.2.1 WHAM (Regression)

As has been shown in recent global motion estimation literature [66], (detected) 2D

pose sequence conveys semantic information necessary to infer plausible motions

that describe actions, apart from providing the re-projection error term that needs to

be minimized by every HMR system. It is therefore natural in the context of global

motion regression to combine camera-local deep estimator constructs with motion

semantics in order to have pixel-aligned yet meaningful 3D motions; WHAM is model

presented recently that successfully implements this idea.

Proposed by Shin et al., WHAM [50], trains an end-to-end model for global human

motion capture frommonocular videos. A camera-local encoder-decoder architecture

is used to estimate SMPL parameters in camera-coordinates. It uses the cropped

image patch and the output of the trained 2D pose encoder as inputs, while it also

produces estimated feet-ground contact probabilities (two per foot, heel and big toe).

This is trained to produce SMPL meshes with minimal re-projection error. To account

for global motion, mesh orientation and translation in world coordinates need to be

estimated; WHAM uses the 2D pose embedding and camera pose estimated using

off-the-shelf SLAM [53], to generate initial world mesh poses in a recurrent fashion. A

last stage integrates the estimated ground contacts to account for physically possible

global motions. It should be noted that those two stages, depicted in Figure 3.5

bottom, solely output a sequence ofmesh orientations and translations; the rest SMPL

parameters are maintained from the camera-local ”path” (Figure 3.5 top).

In our port ofWHAM,we replace camera-local estimateswith the ones produced by the
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Figure 3.5: Schematic of the WHAM pipeline. Given a sequence of 2D keypoints
estimated by a pretrained detector it encodes it to the motion feature that is fed to the
global trajectory decoder along with estimated camera poses. The trajectory refiner
updates the global mesh pose using the foot-ground contact, while the SMPL decoder
estimated camera-local mesh parameters and ground contact probabilities. The final
output of WHAM is pixel-aligned 3D human motion plus global pose placement.
Source: Reconstructed from WHAM: Reconstructing World-grounded Humans with
Accurate 3D Motion, Shin et al. [50]

SOTAmethodHMR2.0 (see 2.3.2). In addition, we use contacts estimated fromBSTRO

which is more accurate than WHAM and also provides richer contact information (see

2.3.4). We also use amore efficient camera estimator, based on VO rather than the full

Visual-SLAM. In order to use the learnedmotion semantics by the ”2DMotion Encoder”

and global mesh regressors, those parts of WHAM are used pretrained and frozen, as

will be explained in more detail in the next chapter.

3.2.2 HuMoR (Motion Prior)

Before introducing the used global motion optimization framework, hereby a motion

prior is introduced that is used to plausibly ”animate” inferred meshes in the

world coordinates. Human motion priors are actually necessary components of all

optimization-based methods as there is no useful input cue related to global 3D

motion, when capturing on monocular settings. In addition, this objective ensures that

human bodies perform realistic motions when seen exclusively in the global frame

of reference. HuMoR presented by Rempe et al. [45], is the most popular among

the SMPL-based motion priors, and it is based on the premise that realistic human

motion exhibits smooth transitions and adheres to physical constraints. Tomodel this,

it defines a state representation using SMPL pose parameters, global mesh pose, joint

angles, their corresponding velocities (angular for angles, linear otherwise), and feet-
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ground contact.

The core of HuMoR is a conditional Variational Autoencoder (cVAE) that is shown in

Figure 3.6. The model receives a pair of states at consecutive timesteps (t-1 and t) as

input and is trained to reconstruct the state at time t. The latent prior is conditioned on

the previous state. This training process teachesHuMoR to learn a powerful probability

distribution of realistic human poses and their transitions. Once trained, HuMoR can

act as a powerful prior for motion estimation tasks. If presented with a new state pair,

the model can calculate provide two loss terms:

• Prior Loss: This measures the distance of the conditional prior distribution from

the standard Gaussian distribution (i.e. the prior of the conditional prior) using

the Kullback-Leibler (KL) divergence.

• Posterior Loss: This measures the difference between the encoder’s output

(i.e. the posterior distribution of the latents) and the conditional prior network’s

output; in practice it is the KL divergence of two Gaussians as both networks

predict Gaussian mean and variance parameters.

By combining these losses, HuMoR helps ensure that during motion estimation, the

generated poses are not only likely under ”normal” movement but alsomaintain fluidity

and realism as defined by its implicit understanding of transition dynamics.

Figure 3.6: HuMoR cVAE Architecture. During training, given the previous state xt−1
and ground truth current state xt, the model reconstructs x̂t by sampling from the
encoder distribution. At test time HuMoR can (i) generate the next state from xt−1 by
sampling from the prior distribution and decoding, (ii) infer a latent transition zt with
the encoder, or (iii) evaluate the likelihood of a given zt with the conditional prior. For
motion optimization the latter is used.
Source: HuMoR: 3D Human Motion Model for Robust Pose Estimation, Rempe et al.
[45]
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3.2.3 SLAHMR (Optimization)

A very effective approach for local-to-global motion lifting using optimization only is

the recently presentedmethod SLAHMR. Proposed by Ye et al. in their workDecoupling

Human and CameraMotion fromVideos in theWild [63], SLAHMR, defines the following

hand-crafted optimization objectives to convert the camera-local human tracks to

realistic global motions using the estimated camera trajectory (see Figure 3.7):

• Joints re-projection: the regressed SMPL joints should be close to the (detected)

2D keypoints when projected using the regressed camera pose and scale. The

optimizer alters the SMPL parameters (mainly global orientation and translation)

to minimize this criterion.

• Motion prior: the sequence of SMPL parameters should comprise plausible

temporal transitions that not only are smooth but also realistic. To encourage

this, the optimizer refines the SMPL parameters in pairs by maximizing the

transition likelihood of a learned human prior, HuMoR [45], which was explained

in 3.2.2.

• Smoothness of the parameters: as smooth parameters play a key role in

perceived motion fidelity, SLAHMR employs parameter smoothing during the

optimization in the following ways:

- shape smoothing by using a standard Gaussian prior (or equivalently by

applying weight decay to the ~β parameters)

- pose smoothing in the latent space of VPoser [42], a Variational

Autoencoder (VAE) for the SMPL body pose ~θ, using a standard Gaussian

prior (for the latents)

- temporal smoothing of the joints regressed from the SMPL mesh (as this

regression is differentiable the errors will be back-propagated to SMPL

parameters)

In our port of SLAHMR, we use all of its objectives as originally defined. The main

difference is that the input to the ”Minimization” stage is the global track obtained

from the local-to-global regression stage; in this project we use WHAM to provide this,

a model presented in 3.2.1.
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Figure 3.7: Schematic of the SLAHMR optimization proposal. Given a sequence of
frames wherein each 2D keypoints and local SMPL parameters have been estimated,
while camera trajectory has been inferred using SLAM, the optimization optimizes for
accurate re-projection and motion likelihood. As a result, the camera-local human
tracks are converted to realistic global motions as shown on the right.
Source: Reconstructed from Decoupling Human and Camera Motion from Videos in the
Wild, Ye et al. [63]
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Chapter 4

Monocular Dynamic Motion Capture: A

Regression-Optimization Hybrid

Approach

After having described how useful quantities for motion capturing can be inferred from

the input pixels, as well as ways to reason about local and global motion patterns in

either a regression or an optimization based manner, its time to present the developed

system for the purposes of this project. An overview of our pipeline with all the

implemented nodes is given for reference in Figure 4.1, while in the sections that

follow the technical details of the intermediate components are given along with the

extensions of literature works towards a Regression-Optimization Hybrid Approach for

Monocular Dynamic Motion Capture.

4.1 System Architecture

As was mentioned in the first chapter, the developed system, comprises a modular,

ETL-based, architecture where each processing node operates on aggregated outputs

of nodes from the previous level; either in frame- or in patch-wide context. In the rest of

this section, ordered processing steps and technical details of the employed models

are presented. In Table 4.1), all the models that are used in this project along with the

corresponding number of trained parameters are listed for reference. We remind the

reader at this point that the overall aimof the developedpipeline is to generate plausible
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Figure 4.1: Our implemented pipeline in full level of detail. Themonocular input video is
processed through a series of nodes that are grouped into four categories based on the
working domain: frame-level, that operate on the input frames, patch-level, that operate
on each human detection separately, SMPL-level, that operate or based on the SMPL
parameters, and track-level, that optimize the entire motion. The connections denote
dependencies in the execution graph. Note that this figure is best seen in zoom.

multi-human global trajectories given a monocular (RGB) video as input.

4.1.1 Frame-Level Processing (first level)

The first level of execution nodes is directly fed with the input frames. This comprises

object detection and segmentation, gender and depth estimation, as well as detection

aggregation. In contrast to those, nodes deeper into the execution graph are either

operating on a patch (i.e. cropped detection) level or on the estimated SMPL

parameters of the detected humans. The technical details of this level nodes’

implementation follows.

Human Detection

Our object detector, Co-DETR [67], presented in 2.1.1, receives as input a frame of

the input video and outputs a set of bounding boxes and corresponding confidence

scores for the person class. The model receives the frame resized and padded to

1024× 1024px in the configuration used, and uses 236M parameters (Co-DETR-Large).

We use the OpenMMLab’s mmdetection [8] implementation of Co-DETR, which among

others provides utilities to resize detections from the dimensions required by themodel
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Table 4.1: Details of the models used in our pipeline. Depth denotes execution graph
generation index, while RNN denotes Recurrent Neural Network (mainly LSTM [20])
backbone, and Stable Diffusion v2 was presented in [47]. The models are sorted in
ascending depth and parameter count order.

Depth # Parameters Model Task Network Type

1

3.4M DPVO Visual Odometry RNN
68.1M Marigold Depth Estimation Stable Diffusion
108.1M ConvNext v2 Instance Segmentation CNN
236M Co-DETR Object Detection Transformers

2
95.6M MiVOLO Gender Estimation Transformers
308.5M ViTPose 2D Pose Estimation Transformers
670.5M HMR 2.0 SMPL Estimation Transformers

3
23.3M PHALP Tracking DeepSORT
39.5M HMAR Texture Estimation CNN
243.1M BSTRO Contact Estimation Transformers

4
0.67M Vposer SMPL Pose Encoding MLP
9.7M HuMoR Human Motion Prior MLP
47.7M WHAM Global Motion Recovery RNN

to the original frame dimensions. Example of an input frame and the corresponding

person bounding box and score is given in Figure 4.2.

Human Segmentation

For instance segmentation, we opted for ConvNext v2 [60], presented in 2.1.2. It

receives the same input as Co-DETR, i.e. a frame of the input video, and outputs a

set of bounding boxes, instance segmentation masks, and corresponding confidence

scores for the person class. ConvNext operates on images resized to 224×224px, while

in the configuration used it contains 108.1M parameters (ConvNextv2-Large). We use

the mmdetection implementation of ConvNext v2 as was the case with Co-DETR. An

example of the same input frame with the corresponding person mask and score is

given in Figure 4.2.
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Figure 4.2: Output of first-level processing nodes for an input frame of the dataset
considered in this project, 3DPW. (a) From left to right: input, object detection,
instance segmentation, gender, and depth estimation. The image and the outputs
are (intrinsically or scaled to) 1080 × 1920px. (b) Camera trajectory (X-Z translational
component) estimated using DPVO [54].

Gender Estimation

Genders are estimated usingMiVOLO [31], described in 2.1.5. It also receives a frameof

the input video and outputs the gender and age of every detected person (and/or face).

MiVOLO operates on images resized to 224 × 224px, while in the configuration used

it contains 95.6M. We use the PyTorch-based implementation of MiVOLO’s authors.

In the aforementioned example of Figure 4.2, the corresponding detections with

annotated genders are also given. It is noteworthy, that MiVOLO exhibits significant

bias towardsmale predictions, which can (partially) be attributed to the large covariate

shift derived from the difference between the dataset we are using , 3DPW, and the one

it was trained on, Lagenda [31]. In an attempt to compensate for this bias, we require

lower female thresholdswhenweaccount for track-wide genders in 4.1.4. Weunderline
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that all detections, coming either from the object detector, the instance segmentor, or

the gender estimator, are associated and aggregated based on inter-box weighted IoU

(the weights being the detection scores).

Depth Estimation

To estimate frame-wide depth maps, we use Marigold [25], described in 2.3.1. It

receives the same input as the detectors, i.e. a frame of the input video, and

outputs the relative depth for every pixel, with a maximum of 16-bit level storage

or 65K discrete depth levels. Marigold operates on images resized to 384 × 512px

(width × height), while in the configuration used it enfolds 68.1M parameters in the

autoencoder and denoising networks. We use the Hugging Face’s diffusers-based

implementation which automates noise sampling and denoising, towards regressing

the depth. Example of an input frame and the corresponding depth map is given in

Figure 4.2. We remind the reader that we estimate depth to assist the camera pose

estimation by providing a better depth initialization for visual odometry. However, since

our visual odometry also uses human detections, we defer its description to the patch-

level processing subsection that follows.

4.1.2 Patch-Level Processing (second level)

In the next processing stage, nodes will analyze patches, which are cropped sections

of the input frames. These patches are derived from the detected (and aggregated)

human bounding boxes. Since these boxes typically fit closely around the human

silhouette, and the models require a different aspect ratio, we need to create resized,

human-centered image patches, that will then be compatible with the stage’s DNN

learners. This process involves two steps: processing the detections and isolating

the human subjects, as outlined below.

Box Processing

First, we resize the detected human bounding boxes to match the required aspect

ratios. We add padding to prevent the boxes from being too tight, which could cut off

parts of the body due to detection errors. The humans remain centered during resizing,

but the new bounding box includesmore of the surrounding image. Sincemostmodels
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Figure 4.3: Comparison of original (center) and isolated (right) slicing of for an input
frame (left) of the dataset considered in this project, 3DPW. In this example, the
detected bounding box corresponding to the female, was first converted to a square
aspect ratio before slicing. As a result, part of the male subject is also included in the
original, non-isolated, sliced patch, whose tight box is masked-out using white color.

require square image patches (especially for re-projecting 3D data), we ”squarify” the

bounding boxes. Here’s the complete processing for each bounding box:

1. 5px padding is applied to the original (tight) bounding boxes

2. The boxes are resized so as to have equal widths and heights

3. The bounding boxes are translated inside the frame (in case they overflow the

frame after resizing)

4. For the bounding boxes that spill outside the frame, cropping is performed which

may result to aspect ratio offsets

As shown in Figure 4.1, this processing level includes nodes that estimate SMPL

parameters and 2D pose keypoints for detected human subjects. Figure 4.4 provides

an example input patch (two people are shown, the focus is on the female), along with

the output from this level’s nodes. Note that the ’squarification’ of bounding boxes can

occasionally introduce aspect ratio errors, even for boxes that fit within the frame. This

primarily affects the accuracy of mesh orthographic projection to the patch (which

assumes square frames), an issue acknowledged in relevant literature [32]. Future

updates to the box resizing code should address this issue, which is also visible in the

SMPL estimation example in Figure 4.4.
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Figure 4.4: Output of second-level processing nodes for an input patch of the same
frameas in Figure 4.2. From left to right: input patch derived by resizing and squarifying
the female’s tight bounding box, estimated 2D pose keypoints in COCO 17 format,
projected SMPL mesh generated by the estimated parameters, and its corresponding
2D keypoints. Note that small errors in the resizing of the bounding box that resulted in
it being non-square, were propagated to the projection of SMPL mesh and joints. This
figure is best seen in zoom.

Subject Isolation

Resizing the original bounding boxes can lead to other human subjects partially

appearing within the box of interest. This is especially common when multiple people

are close together in the input image. As a result, 2D detectors requiring human-

centered inputs may fail or underperform. To mitigate this, we isolate subjects within

their resized bounding boxes by ”whitening out” pixels that belong to other nearby

tight bounding boxes, as shown in Figure 4.3. If two bounding boxes overlap, we

whiten all pixels belonging to other humans, except those within the focused human’s

segmentation mask. This maintains visual cues while isolating the subject during

patch creation. Importantly, we found that whitening out these regions instead of

blackening them, significantly improved performance. This may be because models

have been trained to interpret black as shadows or corners, causing confusion when

used for masking.

2D Pose Estimation

As was explained in 2.1.4, estimating 2D pose directly from the pixels is quite useful as

it can act as the supervising signal for optimizing the human tracks and inferring global

human motion semantics. To estimate pose keypoints for the detected persons, we
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Figure 4.5: Visualizing (projected) joint representations and corresponding skeletons.
From left to right: input mesh, the 24 joints regressed from SMPL, the 17 joints from
2017 COCO Keypoint Challenge that is used by ViTPose, and the 14MPII [1] joints used
for metrics computations and given here for reference. The red keypoints refer to the
pelvis joint that acts as the mesh root (i.e. the mesh frame is placed at the pelvis).
When there’s no pelvis joint (3rd and 4th column) the hip joints are used to approximate
it. This figure is best seen in zoom.

use ViTPose [62]. It receives as input a patch with the person in focus isolated from

others, and outputs the (x, y) pixel coordinates of body joints. ViTPose was trained

to predict 17 keypoint heatmaps, for the joints defined in the COCO dataset [35] and

2017 Keypoint Challenge. In contrast, the SMPL defines 24 in its joint regressor, J. In

Figure 4.5 we present the joints and kinematic tree of the two models as well as the

joint representation used for evaluating themodels, coming fromMPII pose estimation

dataset [1] . ViTPose operates on human-centered patches resized to 256×256px, while

in the configuration used it enfolds 308.5M parameters. We use the OpenMMLab’s

mmpose implementation of ViTPosewhich handles heatmap sampling and visualization

of the detected pose. Example of an input patch and the corresponding 2D pose is

given in Figure 4.4.

SMPL Parameters Estimation

In subsection 2.2.2we presented the chosen parametric representation of human body

in 3D, SMPL, while in 2.3.2 the SOTA method for estimating SMPL parameters from

images, HMR2.0 [15] was explained. HMR2.0 receives as input a patchwith the person

in focus isolated from others, resized to 256× 256px, and outputs the following:

• ~θ: SMPL body pose comprising the joint rotations relative to their parent in the

kinematic tree, i.e. a 23×3-dimensional vector (the pelvis joint has noparent). The

rotations are regressed in angle-axis format (popularized by the work of Olinde

Rodrigues [46]).
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• ~β: SMPL body shape parameters, a 10-dimensional vector with the weights of

the 10 first PCA coefficients.

• ~π: Relative camera translation and scale. The translation considers normalized

offset from the patch center, while scale is used alongside a pre-defined focal-

length1 to estimate camera-to-mesh translation along the Z-axis. The default

focal-length value of HMR 2.0 is 5000mm.

We use the default version and implementation of HMR 2.0 which is based in

PyTorch and operates on neutral genders only. As a result, when we try to use

the estimated parameters for gendered SMPL mesh generation, we get small errors

(most prominently the heights are off as males have different height distributions than

females and normal genders, which is captured in the PCA of the shapes). To alleviate

this we regress gender-neutral parameters for this stage but replacewith the estimated

gender when we do the global track optimization. An example of gendered mesh

placement along with SMPL-derived joint locations is given in Figure 4.4.

Visual Odometry

We employ the SOTA Visual Odometry method, DPVO [54] (introduced in 2.4.1), for

camera pose estimation. While DPVO typically operates on entire frames, we optimize

its use by leveraging human detections. VO algorithms underperform when visual

samples include dynamic foregrounds, as they rely on correspondences from static

regions for camera displacement estimation. Scenes in HMR datasets often feature

centrally-located humans in motion, increasing the likelihood of the correspondence

matching algorithm sampling foreground pixels. DPVO, like other VO methods, uses

gradient-based sampling of image pixels, i.e. it draws the samples for high intensity-

gradient image regions. We enhance this process by zeroing out gradients within

human segmentation masks, effectively discouraging the sampler from selecting

those pixels.

One of the key components and factor to DPVO’s effectiveness is its ability to jointly

optimize for camera pose and patch depth for each of the tracked patches through

time. This optimization is initialized by randomly assigning depth values to the pixel

centroid of each patch, which is sub-optimal and the actual cause of odometry errors

1The focal length is the distance between the center of a lens and the point where it focuses light
rays to form a sharp image on the camera sensor.
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input

original

with mask
reduction

gradient samples

Figure 4.6: Effect of zeroing-out the intensity gradient within human segmentation
masks (our improvement to DPVO’s correspondence sampling). From left to right:
input image, image gradient (after 4x downsampling), and 1000 binomial samples
from it (gradient as probability mass function). Top: DPVO’s standard sampling (note
pixels at foreground border are likely selected). Bottom: Our improved sampling with
foreground masking, reducing the selection of sky pixels.

or failure [54]. To alleviate this, we extend DPVO by incorporating estimated per-pixel

depth values as described above. In particular, the patch depths are extracted andmax-

pooled to match the spatial dimensions of the patch features extracted from DPVO’s

feature extractor, ResNet [18]. Then, instead of randomly initializing patch depths we

use the values from monocular depth estimation.

4.1.3 SMPL-Level Processing (third level)

After regressingmesh parameters for each detected human, we operate in a combined

2D-3D domain. This allows us to perform texture-aware human tracking, estimate

scene contacts, and fit local ground planes using visual cues, as well as SMPL body

pose and shape. These components are essential for creating concise, camera-

local 3D human tracks that will subsequently be converted to global ones using the

estimated camera trajectory. We enumerate this stages’ nodes followingly.

Appearance-based Tracking

In 2.3.3, we introduced our chosen tracker, PHALP [43], which extends DeepSORT with

information from estimated SMPLmeshes (pose, global placement, and regressed UV
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Figure 4.7: Output of third-level processing nodes for an input frame of 3DPW. Top,
from left to right: input, SMPL mesh fitting, contact estimation (front and back views
for each subject), and ground estimation. Note the grounds are regressed per subject,
i.e. they constitute local ground portions. Bottom: appearance aware tracking and
textures visualization (different colors correspond to IDs).

texture). PHALP employs a CNN for regressing projected SMPL mesh textures and

comprises 23.3M learnable parameters. Figure 4.7 visualizes tracking for the same

frame as in Figure 4.4, also demonstrating the regressed UV textures. Importantly, we

observed that disabling texture-based matching in PHALP increased the likelihood of

identity switches and, crucially, identity swaps. The latter occurs when two subjects

are in proximity, and the tracker exchanges their IDs permanently.

Contact Estimation

As introduced in 2.3.4, we employ amonocular SMPL contact estimator, BSTRO [21], to

derive the probability of each mesh vertex being in touch with scene surface. BSTRO’s

CNN backbone, HRNet [58], and transformer mesh encoder, METRO [34], encapsulate

243.1M parameters for processing cropped patches resized to 224 × 224px. We
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exemplify regressed contact information for the meshes of the input frame in Figure

4.7. We employ mesh contact estimates in two major ways: first we fit ground planes

to the vertices in contact, and second we pool contact information around feet and

hand centroid vertices to regress coarse foot-hand contact information. The latter is

performed by max-pooling a radius of 10 vertices around pre-defined vertex centroids

associated with foot and hand joints. Both are used in global motion optimization of

the regressed human tracks.

Ground Estimation

Global motion optimization, and, in particular, HuMoR model [45] presented in

3.2.2, needs ground information for converting SMPL parameters to a ”canonical”

representation, i.e. normalized with respect to distance from the ground, body height,

and camera parameters. We follow the steps below to estimate ground planes per

detected human and frame:

1. We aggregate all vertices with contact probability greater than 0.5 from all SMPL

meshes in a given frame.

2. The vertices are clustered based on vertex density using the DBSCAN algorithm

[12] into groups of spatially close vertices in contact.

3. For each cluster, a plane is fitted using least-squares estimation.

4. Each SMPL is associated with a plane by minimizing the distance of its vertices

in contact. If feet belong to those vertices, they are examined prior.

5. The estimated planes are merged per-frame and filtered in time, so that for every

SMPLmesh the most recent plane with its feet in contact is kept. This is done to

prevent non-physical plane associations for instance when feet are not in touch

with the ground.

In 4.7 we show regressed planes for the detected humans and corresponding

regressed meshes.

4.1.4 Track-Level Processing (fourth level)

After completing appearance-aware human tracking across frames and estimating

essential 3D properties (like vertex contacts and ground planes) for the regressed
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meshes, we are ready to assemble complete human tracks. Since the SMPL meshes

were estimated in camera coordinates, these initial tracks are camera-local. In this

subsection, we’ll outline the steps to convert these local human motions to the world

frame, as introduced in the previous chapter.

Local Human Tracks Creation

To create the initial human tracks, we first gather outputs from all parent nodes and

associate them using tracking information. Additionally, we must address potential

detection or trackingmisses (e.g., due to occlusions) by infilling missing observations.

We start by extracting the track length and visibility from the tracking node, which we

denote as:

t(p)s : start frame of p-th track

t(p)e : end frame of p-th track

V
(p)
i : 1 if p-th track is visible in frame i, 0 otherwise

0 ≤ i ≤ Nframes

Therefore, the track corresponding to the p-th detected person spans times (i.e.,

frames) T (p) = {t : t
(p)
s ≤ t ≤ t

(p)
e }, which we denote with T for simplicity with the

person index p implied by the context. The tracking node provides the start and end

times of each track, which we determine by examining the first and last occurrence of

each track ID. Based on the frames where the tracked person is detected, we gather

the outputs of the following nodes:

• 2D Keypoints: We collect a sequence of T × 17 × 2 COCO-2017 keypoints for

the frames where the person is visible. We use linear interpolation to fill in any

missing frames for each keypoint independently.

• SMPL Parameters: We collect the SMPL parameters - shape (~β), pose (~θ),

global translation (~τ ), and global orientation (~Γ) - for the frames where the

person is visible. We use linear interpolation for missing translations, and SO3

interpolation for pose and orientation (following the SLAHMR method [63]).

While there are DNN-based methods for more realistic SMPL parameter infilling

during long-term occlusions [65], we opt for the simpler approach of interpolation

since our focus is on capture techniques. Subsequent stages in our process will
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handle enhancing occluded motions.

• Camera Poses: From the VO system, we obtain a sequence of camera

translations and rotations relative to the world frame (conventionally set as

the first frame’s camera location). The output is a T × 4 × 4 sequence of

transformation matrices in homogeneous coordinates. DPVO’s graph-based

bundle adjustment handles missed frames by extrapolating the pose difference

from the last known frame [54].

• Ground Parameters: or each SMPL mesh, we fit a local ground plane to the feet

vertices (or other contact vertices). We collect these as T × 3 parameters for

normals and T × 3 for offsets. We’ll use these to estimate canonical mesh

coordinates during global optimization with the HuMoR motion prior. Missing

values are linearly interpolated.

Figure 4.8 (2nd row) visualizes input frames and corresponding 3D bodies for two

human tracks. Note that camera information, though present, has not been used

yet to position the trajectories in the world frame. Also, since SMPL parameters

are estimated using human-centered image patches, the meshes initially appear

overlapped (Figure 4.9). We address this by following common practice in global HMR

solutions: estimating frame-wide camera translations with CLIFF’s camera conversion

[33], and then computing relative translations of all tracks to the first one. This also

reduces the impact of camera movement on the local 3D human motions.

Regression-based Global Track Lifting

To transform trajectories from camera coordinates to a fixed world frame, we

employ recurrent regression network. Specifically, we utilize the WHAM architecture

[50], presented in 3.2.1, configuring it with 47.7M parameters in its recurrent and

convolutional modules. Figure 4.10 illustrates how we leverage WHAM’s 2D keypoint

encoder, global decoder, and refiner modules. Notably, we provide the following

inputs:

1. Motion Encoder: 2D poses estimated by ViTPose.

2. Global Decoder: Camera angular velocities estimated by DPVO.

3. Global Refiner: Feet contact probabilities estimated by BSTRO.
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Figure 4.8: Visualization of human tracks recovery. Left to right: input frames from
scene courtyard_goodNews_00 of 3DPW [57], camera-local motion recovery, global
motion lifting using regression, and using hybrid regression and optimization in world
frame.
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Figure 4.9: During camera-local mesh recovery, every subject is treated independently
of the others, assuming it centered in its cropped image patch. As a result, we may
get accurate re-projections (left), but all human meshes appear centered around in the
origin in the world frame (middle). By maintaining relative offsets from the frame-wide
regressed camera (right), we achieve much better global mesh placement.

Global
Trajectory
Decoder

2D Motion
Encoder

Global
Trajectory

Refiner

Global OrientationΓ0

Global Translationτ0

Γ  
τ

CBSTRO Est. ContactsTDPVO Est. Camera

VITPOSE
J2D

(p)
(p)

(p)

(p)

(p)
(p)

2D Keypoints

Figure 4.10: Our WHAM-based global trajectory regression network. We provide the
network with the following inputs derived from ancestor nodes: keypoint sequences,
camera poses, and contact probabilities. The regressor then estimates both initial and
refined global mesh pose sequences, which are used to position the SMPL meshes of
the p-th person within the world coordinate frame.

To generate the remaining SMPL parameters (excluding global translation and

orientation), we rely on HMR2.0, making image input unnecessary for our WHAM-

based global trajectory regressor. As demonstrated in Figure 4.8 (3rd row), WHAM

effectively reduces jitter and produces more realistic human motions within a fixed

frame. Additional visualizations can be found in the project’s code repository.

Optimization-based Global Track Refinement

As can be seen in 4.8 (3rd row), our regressor produces globally plausible yet locally

inconsistent meshes. More specifically, the projected mesh silhouettes deviate from

the depicted ones whereas in camera-local meshes (2nd row) this is not the case.

This is caused from WHAM modules weighting more the smoothness and realness
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of the motion than its re-projected appearance. The first step we follow, therefore, is

eliminate this by minimizing the euclidean distance of the projected SMPL joints and

the detected pose keypoints from ViTPose. Then, following SLAHMR, we smooth-out

the SMPL parameters and regressed joints so to reduce motion jitteriness in world

frame, and finally we maximize the likelihood of SMPL transitions using HuMoR and

the estimated local grounds. The optimization recipe we follow in this project closely

follows that presented in SLAHMR [63], and has as follows:

(i) [0 ≤ topt ≤ 250] 2D Keypoints: minimize SMPL joint re-projection distance from

detected keypoints by optimizing the global translation ~τ , orientation ~Γ, and

offset from camera (similar to ~π). We start by optimizing ~τ for 50 steps to provide

a better initialization point for the joint optimization with the other parameters.

(ii) [0 ≤ topt ≤ 50] Body Shape: discourage unlikely body shapes by minimizing the

KL-divergence of the shape PCA coefficients, ~β to the unit Gaussian. After

each step, we compute the average shape and use this for the entire trajectory,

effectively minimizing shape jittering.

(iii) [50 ≤ topt ≤ 150] 3D Joints: smooth-out the SMPL joints, by optimizing the global

translation ~τ , orientation ~Γ, and body pose ~θ parameters for minimal first order

difference in joint locations.

(iv) [200 ≤ topt ≤ 250] Body Pose: discourage unlikely body poses by minimizing the

KL-divergence of the body pose latents, ~θenc (i.e. ~θ encoded with VPoser [42]), to

unit Gaussian, as well as the temporal smoothness of the latents.

(v) [250 ≤ topt ≤ 400] Motion Prior: discourage motion ”jumpiness”” by maximizing

the likelihood of each SMPL transition in HuMoR [45] encoder. During this stage,

we optimize body pose latents ~θenc (and therefore body pose), global pose ~Γ,~τ

and offset from camera. It is important to note that since HuMoR relies on an

explicit ground to transform meshes to/from a normalized space, we observed

that it lead to failure in approximately 41%of the scenes. SLAHMR reports similar

findings. In case of failure (expressed with NaNs in the likelihood), we revert to

the last successful step and end the optimization).

where topt denotes the step index of the optimization process. As described in [63], we

opt not to optimize all desired parameters jointly as due to the intrinsic ambiguation

the optimizer usually finds a short-path that yields non-meaningful human poses or
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motions. Differently from SLAHMR, we use the Adam [26] optimizer with learning rate

0.05. An example output of global optimization is visualized in 4.8 (4th row).

4.2 Experimentation Datasets

HMRdatasets typically contain both 2Dand 3Dannotations for each person in the input

frames or scenes. These annotations can include image-based detections, ground-

truth human attributes (e.g., gender, age), and 3D human body shape information

captured via markers or other methods. Additionally, some datasets provide global

mesh placements relative to a fixed world reference frame. While this information is

beneficial for end-to-end training of local-to-global trajectory lifting networks, it is not

strictly essential. Models can still learn to predict realistic motions within an implicitly

defined global frame. Moreover, standard evaluationmetrics involve amesh alignment

stage, making the explicit global ground truth data unnecessary.

For the experiments in this project, we focus on the widely-used monocular HMR

dataset 3D Poses In-The-Wild (3DPW), which is described next.

4.2.1 3D Poses In-The-Wild (3DPW)

Introduced by Marcard et al. [57], the 3D Poses In-The-Wild (3DPW) dataset is a

leading benchmark for evaluating human pose estimation algorithms in uncontrolled

environments. This dataset features indoor and outdoor videos captured with a

moving mobile phone, along with corresponding 2D annotations of human pose and

shape. It is split in three sets, train containing, validation, and test, containing 25,

12, and 24 scenes respectively. The 3D poses are meticulously estimated through

a process that optimizes SMPL body model alignment against 2D pose detections,

enhanced by Inertial Measurement Unit (IMU) readings attached to human joints. A

frame of 3DPW with the provided ground truth annotations is give in Figure 4.11.

3DPW presents a particularly demanding evaluation scenario. It comprises

approximately 51K frames recorded at 30Hz, depicting common actions like walking,

conversing, and stair climbing. The moving camera, natural clothing, and cluttered

backgrounds introduce significant occlusions and complexmotions, making it a robust

test for monocular motion capture in dynamic settings, that is at the core of the current

work. Therefore, we use exclusively 3DPW for evaluating our developed pipeline both
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Figure 4.11: Sample frame from 3DPW (left) and visualization of 2D poses alongside
camera-accurate, textured SMPL 3D meshes. Global placement is achieved indirectly
via IMU-based camera localization.
Source: Refactored from Recovering accurate 3d human pose in the wild using imus
and a moving camera, Marcard et al. [57]

in terms of camera-local and global mesh trajectory estimation. In the dataset’s

benchmark guidelines, it is allowed for methods to employ ground truth annotations

of human genders and tracking IDs; we only use ground-truth genders as MiVOLO

exhibited significant bias when inference was performed on 3DPW.
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Results

In this chapter the quantitative and qualitative results of applying the developed

methodology to the datasets under consideration are given. Webeginwith a brief recap

of the pipeline, and the proceed by describing the evaluation process. The chapter is

completed by results in tabular and image forms as well as relative discussion.

5.1 Methodology in a Nutshell

Our approach to monocular human motion recovery (HMR) for videos shot with

dynamic cameras leverages a multi-stage pipeline to deliver accurate 3D motion

representations of individuals in complex environments. The detailed process is

repeated below in summarized form:

- Video Preprocessing: The input video is first carefully preprocessed. Individual

frames are extracted (optionally) padded to have square aspect ratios, to

facilitate subsequent analysis.

- Image-based Detection: State-of-the-art 2D human attribute estimation

techniques are employed to identify individuals and detect key joints and

landmarks within each frame. Alongside pose, body attributes and additional

features, such as genders and segmentation masks, are extracted. These 2D

detections form the basis for subsequent 3D reconstruction.

- Mesh Estimation: We fit SMPL models to the detected 2D attributes. The SMPL

model provides a parametric representation of human body shape and pose.
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By optimizing SMPL parameters against the 2D detections, we obtain a local

3D representation of individuals in each frame, capturing their body shape and

articulation relative to the camera.

- Appearance-Aware Tracking: To maintain consistent reconstructions across

frames and mitigate challenges like occlusions or complex movement, we

implement an appearance-aware tracking mechanism. This tracker associates

detected individuals between frames, incorporating visual features beyond just

box-based cues. This ensures robustness and temporal coherence in the 3D

reconstructions, andwas found to be a crucial aspect of the overall performance.

- Local Track Creation: From the sequence of estimated camera-local SMPL

parameters, we derive 3D human motion tracks within the camera’s coordinate

system. These tracks depict the trajectory of each individual’s motion relative

to the camera over time. We infill missing observations caused by the detector

and/or the tracker by interpolating on the present ones.

- Global Trajectory Regression: To recover the 3D trajectory of each subject within

a world reference frame, we employ a regression based on WHAM that enables

us to lift the camera-local trajectory to a global one using regression. Those are

natural realistic global motions, though most times are over-smoothed and tend

to deviate from visual observations.

- Global Optimization: The regressed global trajectory is further refined using a

targeted global optimization strategy. This step enforces desired characteristics

like smoothness, physical plausibility, and re-projection consistency gleaned

from the video. Here, we follow the optimization recipe derived from SLAHMR,

ensuring a refined trajectory that adheres to realistic motion patterns.

5.2 Evaluation Procedure

To evaluate our method’s performance, we employ a suite of standard metrics used

for motion recovery analysis. These metrics directly compare regressed 3D meshes

with their ground-truth counterparts at the vertex and skeleton levels. In what follows,

we define the used metrics, and subsequently, outline the process of aligning and

matching ground-truth and generated tracks to ensure accurate and fair comparison.

Followingly, we present our pipeline’s performance on the 3DPW dataset both on per-
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scene basis and the average metrics across each subset of the dataset.

5.2.1 Evaluation Metrics

Mean Per-Joint Position Error (MPJPE) is a fundamental metric that measures the

average euclidean distance (mm) between predicted and ground-truth joint positions.

It is perhaps the most common evaluation metric for 3D human pose estimation.

MPJPE is calculated after the alignment of the root joint (typically the pelvis) between

the ground-truth and predicted body poses. Equation 5.1 shows theMPJPE calculation

for one frame after root joint alignment:

EMPJPE =
1

NJ

NJ∑
i=1

∥∥∥Jgt
i − Jpred

i

∥∥∥2

(5.1)

whereNJ is the number of joints, Jgt
i is the 3D location of the i-th ground-truth joint and

Jpred
i is that of the joint predicted by running SMPLwith the estimated parameters. The

number of SMPL joints used to compute joint-related metrics in this project isNJ = 14

(see Figure 4.5 right) following MPII benchmark [1].

Procrustes AlignedMean Per-Joint Position Error (PA-MPJPE) PA-MPJPE accounts

for potential rigid transformations between the prediction and ground truth by applying

Procrustes Analysis (PA) before calculating the error. Procrustes analysis estimates

the ”best” similarity transformation (translation, scaling, and rotation) so the projection

of one mesh to the other results in minimized vertex offsets [16]. This isolates pose-

specific errors from misalignment in mesh pose or scale. As such, it is the de facto

metric used to benchmark HMR methods.

Mean Per-Vertex Error (PVE) PVE calculates the average position error (mm) of

the vertices of the generated SMPL mesh and the ground truth ones, after root joint

alignment. As it operates on the generated mesh vertices, PVE captures the fit fidelity

of both the human body and shape. Equation 5.2 shows the MPVE calculation for one

frame after root joint alignment:

EPV E =
1

NV

NV∑
i=1

∥∥∥V gt
i − V pred

i

∥∥∥2

(5.2)
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whereNV is the number of joints, V gt
i is the 3D location of the i-th ground-truth joint and

V pred
i is that of the vertices predicted by running SMPL with the estimated parameters.

The number of vertices regressed in the SMPLmodel that we use in this project is 6980,

each having xyz coordinates.

Acceleration Error Acceleration error, introduced by Kanazawa et al. in [23], is

a metric for evaluating the temporal smoothness (m/s²) of the estimated pose

sequence. Acceleration vectors are computed for the 3D joint sequence, and the

acceleration error is calculated as the average difference between the estimated and

ground-truth acceleration vectors. Equations 5.3 show the per-joint and the final

accelaration error calculation after root joint alignment:

Agt
j = Jgt

j,1:Tp−2 − 2× Jgt
j,2:Tp−1 + Jgt

j,3:Tp

Apred
j = Jpred

j,1:Tp−2 − 2× Jpred
j,2:Tp−1 + Jpred

j,3:Tp

Accel =
1

NJ

NJ∑
i=1

∥∥∥Agt
i − Apred

i

∥∥∥2

× fps2

(5.3)

where T is the total timesteps (number of frames) and fps are the frames per second

used while recording the video. As we focus on 3DPW, fps = 30 throughout this work,

and Tp is the number of frames from the first up to and including the last occurrence

of person on the video (as derived via tracking). Note that a total of T − 2 timesteps

are used to compute acceleration error, as Equation 5.3 is the second order central

difference on discretizedmesh samples at time offsets equal to 1/fps = 1/30sec.

5.2.2 Track Alignment

Ground tracks usually contain at least as many time steps as the ones found in

the estimated tracks. Therefore, in order to correctly evaluate an inferred track

an alignment step is necessary. During this step, both tracks are trimmed to

minimum common set of time steps, which usually requires disregarding ground-

truth measurements before the inferred track’s first and after last visible frame. We

remind the reader, that intermediate steps are already present for both track under

consideration at this point, as they are either present (ground truth), inferred, or infilled

during the local track creation stage.
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5.2.3 Bipartite Matching

Given that the assigned IDs by the trackermay differ from the ones given by the dataset

authors as ground-truths we cannot rely on them to associate tracks. There have

been a number of ways to achieve this association problem; we opt for a simplified

bipartite matching algorithm. In particular, we compute the evaluation metrics for

every possible pair of original-estimated tracks, we rank those relative to the ground

truth track ID (i.e. for every such ID we list the metrics with respect to all inferred

tracks), and then select the pairs that minimize the average PA-MPJPE metric of the

association. This process is heavily inspired by SLAHMR, but we allow for more

flexibility by matching based on the average metric across all ground-truth tracks. For

this, we employ the Munkres algorithm1 [40].

5.2.4 Fair Comparison

To ensure fairness, we do not use pre-computed meshes when comparing tracks, e.g.

ones that may have been generated during the optimization process. Instead, we use

the final sequence of SMPL parameters for each track,
¶
~θt, ~βt,~Γt,~τ t

©t(p)e

t=t
(p)
s

, to generate

the corresponding sequence of mesh vertices and 3D joints used for comparison. Via

this way, comparison is actually done for the same set of mesh parameters while

meshed bodies are derived in identical way.

5.3 Results on 3DPW

We are now able to present the results of applying our developed pipeline on the 3DPW

dataset. In Table 5.1 we list the aggregated metrics throughout the entire dataset

consisting of the train, validation, and test subsets. We provide the computed joint and

vertex errors during the three stages of our pipeline: camera-local, based on HMR2.0

[15], global using regression, based on WHAM [50], and global using regression and

optimization with the latter being based on SLAHMR [63]. As can be seen in Table

5.1, WHAM achieves the best pose reconstruction error (Procrustes-aligned MPJPE),

both in its original form and in our re-implementation. Our findings suggest that

using it for global trajectory regression results in naturally smooth motions especially
1TheMunkres (also knownas theHungarian) algorithmfinds theminimum-cost assignment between

workers and jobs in a cost matrix by iteratively manipulating rows and columns, identifying zero-cost
assignments, and adjusting the matrix until an optimal solution is reached.
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Models
3DPW

PA-MPJPE MPJPE PVE Acc

HMR2.0 [15] * 44.4 69.8 82.2 18.1
WHAM [50] * 37.2 59.4 71.0 6.9
SLAHMR [63] * 55.9 - - -

Local 48.1 70.2 90.8 17.8
Global Regr 43.1 74.5 101.1 7.2
Global Opt 49.7 59.9 74.4 9.1
Global Regr + Opt 43.4 64.1 74.3 7.6

Table 5.1: Global motion estimation metrics on 3DPW [57] aggregated across all
subsets, i.e. considering all dataset scenes. The metrics denoted with * are taken
from the original papers and are given here for reference.

when feet are in touch with the ground, as was mostly the case with AMASS [39],

its training dataset. But overall, our global optimization recipe, based on SLAHMR,

resulted in better alignment with the ground truth in terms of global mesh orientations,

and therefore yielded the lowest errors without using PA. Finally, andmost importantly,

chaining regression with optimization for global trajectory lifting showcased viable

results, exhibiting joint reconstruction error on par with that of regression method but

non-PA errors on par with optimization ones. This signifies that combining regression

with optimization for local to global motion lifting, is meaningful and effective, aligning

with similar findings in literature regarding camera-local motion regression [28].

In Table 5.2 we list the (per-)joint reconstruction errors for each scene of 3DPW

separately, while also noting the number of humans that are in focus in each scene

(or equivalently for whom there are ground truth data). One can readily notice the

increased errors on the test compared to the one train split, which mainly has to do

with the increased number of humans appearing as well as the overall complexity of

the scenes in the former. In addition, it is apparent that ”downtown” scenes containing,

tend to have higher MPJPE than ”courtyard” ones. That should be attributed towards

increased cases of occlusion andmore complex interactions happening on the former,

that make the tracker and contact estimator to underperform. Finally, scenes with

wide depth range (such as downtown_sitOnStairs) often lead to poor camera-local

reconstruction error, as local HMR models struggle to disambiguate depth and height

or shape [51].
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(a) Local

(b) Global Regresion

(c) Global Regresion + Optimization

Figure 5.1: Visualization of the recovered human motion from a a scene of 3DPW [57]
training set, outdoor_slalom. Note that camera-local estimation from HMR2.0 [15]
(a) results in consistent re-projections yet quite limited motions in 3D, whereas the
globally-lifted tracks have more diverse motions (depicted as mesh locations). Global
regression using WHAM [50] (b) results in smooth motions sacrificing consistency
with visual cues. Further optimization of the global trajectory (c) results in better
projection consistency and smoother mesh translations relative to the world frame.
The backgrounds corresponding to the last frame are used, while transparency
indicates track age. Frames are sampled exponentially.
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(a) Local

(b) Global Regresion

(c) Global Regresion + Optimization

Figure 5.2: Visualization of the recovered human motion from a a scene of 3DPW [57]
training set, courtyard_goodNews. Note that camera-local estimation from HMR2.0
[15] (a) results in consistent re-projections yet quite limited motions in 3D, whereas the
globally-lifted tracks have more diverse motions (depicted as mesh locations). Global
regression using WHAM [50] (b) results in smooth motions sacrificing consistency
with visual cues. Further optimization of the global trajectory (c) results in better
projection consistency and smoother mesh translations relative to the world frame.
The backgrounds corresponding to the last frame are used, while transparency
indicates track age. Frames are sampled exponentially.
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Local Global Regr. Global Opt. Global Regr. + Opt.

Scenes PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE

Train Set

courtyard_arguing2 24.49 41.57 15.49 34.30 19.08 25.09 18.89 23.90
courtyard_backpack1 30.09 50.76 17.00 44.75 21.47 31.94 19.43 24.46
courtyard_basketball2 38.65 72.12 31.27 85.10 38.84 61.35 35.46 50.28
courtyard_bodyScannerMotions1 96.01 110.28 74.77 103.65 92.95 74.57 70.04 57.07
courtyard_box1 28.86 64.04 22.80 63.07 28.66 45.03 31.27 39.60
courtyard_capoeira2 37.66 80.47 26.75 75.88 32.95 54.50 28.41 43.10
courtyard_captureSelfies2 66.24 92.33 89.95 107.25 112.02 77.99 85.14 101.27
courtyard_giveDirections2 22.28 45.19 12.00 36.18 15.40 25.25 16.88 25.88
courtyard_golf1 29.13 56.28 19.10 52.20 23.61 37.59 27.53 30.26
courtyard_goodNews2 23.97 46.48 13.74 31.23 17.88 22.72 14.26 23.26
courtyard_jacket1 74.53 95.19 55.53 103.50 69.47 74.56 57.44 56.10
courtyard_laceShoe1 96.32 98.40 71.96 87.61 90.27 63.94 72.22 88.27
courtyard_rangeOfMotions2 35.47 46.53 31.82 53.01 40.55 38.07 32.67 32.26
courtyard_relaxOnBench1 28.91 56.77 15.03 97.55 19.02 70.46 19.73 42.85
courtyard_shakeHands2 28.88 55.55 15.41 81.45 20.36 59.40 21.15 45.57
courtyard_warmWelcome1 36.58 62.76 39.27 83.08 48.64 59.86 44.08 51.49
outdoors_climbing1 26.92 36.51 21.38 123.74 26.47 89.56 25.54 56.47
outdoors_freestyle1 25.97 45.58 16.05 29.28 20.61 20.39 20.02 16.99
outdoors_slalom1 31.22 37.59 20.59 59.24 25.15 42.46 24.47 24.30

Test Set

downtown_arguing2 29.39 41.17 28.23 42.35 32.86 33.31 27.65 47.48
downtown_bar2 52.07 56.10 70.33 101.44 80.13 78.72 69.73 98.91
downtown_bus2 54.28 92.14 66.02 89.25 75.34 70.22 66.50 95.84
downtown_cafe2 75.82 99.54 60.72 88.39 68.77 69.40 57.79 87.37
downtown_car2 60.86 72.62 61.86 100.68 70.70 78.61 62.34 99.63
downtown_crossStreets2 56.28 60.69 53.59 84.71 61.21 65.82 51.02 78.86
downtown_downstairs1 46.75 82.11 63.32 126.02 72.34 98.23 65.17 129.77
downtown_enterShop1 68.22 101.18 61.10 118.85 69.81 91.86 61.47 115.71
downtown_rampAndStairs2 29.91 83.66 26.54 59.31 30.74 46.69 25.45 69.66
downtown_runForBus2 61.98 81.88 54.11 76.77 61.62 59.92 54.31 77.43
downtown_sitOnStairs2 107.25 123.98 55.88 106.25 63.93 83.16 55.01 110.62
downtown_stairs1 66.21 101.00 63.61 70.24 72.41 54.54 63.02 68.21
downtown_upstairs1 23.87 46.34 28.92 20.53 33.42 16.18 30.29 23.62
downtown_walking2 36.32 36.13 33.60 48.09 38.12 37.62 32.51 47.76
downtown_walkUphill1 57.15 87.29 52.54 108.22 60.58 83.96 54.87 109.07
downtown_warmWelcome2 42.54 103.69 38.13 64.33 43.56 49.98 37.84 69.20
downtown_weeklyMarket1 27.90 27.50 31.79 63.73 36.37 49.64 30.81 36.93
downtown_windowShopping1 29.73 40.95 30.92 76.31 35.66 58.76 24.53 51.77
flat_packBags1 51.61 66.68 26.92 61.84 31.76 48.39 29.91 64.85
office_phoneCall2 61.03 106.69 60.29 102.87 68.94 79.46 62.20 107.39

Table 5.2: Joint errors (mm) on 3DPW [57] train and test sets. Superscripts denote
number of humans in focus on input videos. Grayscale heatmap has been applied.
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Conclusions

6.1 Discussion

This project explored various methods for recovering human motion from monocular

cues. We began with image-based detection, followed by camera-local mesh and

motion estimation. Qualitative results, presented in Figures 4.8, 5.2, and 5.1, highlight

the necessity of lifting local tracks to a fixed global frame. Additionally, these

results demonstrate the powerful combination of regression-based and hand-crafted

optimization approaches for achieving this goal. Regression enables 3D world

reconstruction of human motion, while hand-crafted global optimization reduces

non-PA reconstruction errors by minimizing re-projection and motion criteria.

We extensively evaluated our pipeline against standard HMR metrics, emphasizing

mesh vertex and skeletal joint reconstruction. Table 5.1 demonstrates that our

implementation performs comparably to, or even surpasses, state-of-the-art methods

on the 3DPW dataset. Importantly, this highlights the effectiveness of adapting hybrid

approaches from camera-local literature to global motion recovery. Specifically, when

global optimization is applied on top of global regression, the recovered motions

exhibit superior performance characteristics.

6.2 Future Work

This work offers several avenues for improvement and extension. Firstly, applying

the pipeline to larger and more recent datasets like RICH [21] and EMBD [24]
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could provide deeper insights into its effectiveness and limitations. Additionally,

more comprehensive ablation tests should be conducted to evaluate the individual

contributions of each pipeline node. For example, while DPVO was used for visual

odometry, the qualitative impact of our interventions remains to be measured.

Finally, an exciting direction would be to develop an end-to-end local-to-global lifting

network. This network could incorporate hand-crafted optimization objectives as

supervision signals or regularization terms during training, potentially leading to further

performance gains.
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Appendix A

Execution Framework

To enable efficient single-GPU inference of multiples compute-heavy models and

high-definition inputs, the developed system employs ETL constructs and filesystem-

based caching mechanisms. Every node’s output is cached in disk and retrieved

before execution, thus enabling atomic filesystem-based cachingmechanismand fault

recovery. In addition, when a node is executed its correspondingmodules are allocated

before and de-allocated after so as to free up GPU memory. This paradigm, though

decreasing throughput, ensures that only one visual learner resides at the GPU at a

given time, thus enabling singe-GPU inference while using multiple memory-hungry

models.

As the number of nodes and modules grow the need for a system-wide configuration

becomes apparent; our execution graph, consisting of nodes that implement the

IPipelineNode interface’s forward and visualize methods (among others), is

configured in YAML format [13], to enable flexibility and ease of use. At runtime,

the nodes are initialized from a developed ConfigReader, that it is in-turn initialized

from a pipeline configuration file. Therein, the class name of each node is resolved

by recursively searching all the files inside src directory of the project as well as

classes defined by PyTorch [22] library. If the node contains modules that allocated

GPU memory then a ConfigConcrete instance is created instead, that handles the

(de-)allocation logic of the enfolded modules. Model checkpoints are transformed

and loaded automatically; in practice the model weights are extracted from each

checkpoint and then re-associated based on shape and module name matching

relative to current model state dictionary.
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APPENDIX A. EXECUTION FRAMEWORK

FrameExtraction

Detection SegmentationForHuman

DetectionAggregation

KeypointDetection

SlicingWithoutIsolation

SlicingWithIsolationCameraEstimation

SmplifyContactEstimation

GenderEstimation

SmplTrackingGroundEstimation

SmplTracksCreation

Optimization

DepthEstimation

Figure A.1: Full pipeline graph visualized directly from the code using the graphviz
library [11]. Class names of the defined work nodes are shown in navy blue, while
dependencies are given as arrows. Note that the execution framework is essentially
based in directed acyclic graph (DAG). This figure is best seen in zoom.

Since multiple nodes require access to the SMPL PyTorch module for generating

the meshes, we have coded from scratch this module accounting for flexibility and

adaptability. In particular, using only the Linear Blend Skinning (LBS) function from

[38], we incorporate all the major variants of SMPL model family, i.e. SMPL [38],

SMPL-H [48], SMPL-X [42], and STAR [41], by only requiring passing the corresponding

string argument during initialization. In addition, this class supports multiple extra

(virtual) joint regressors, defined by the various methods used in this work, effectively

unifying all SMPL calls and enabling more robust evaluation and method comparison.

To enable reproducibility and also contribute to the software infrastructure of the

computer vision community, a special Docker image comprising major deep learning

(e.g. PyTorch 2.1.0) and 3D graphics (e.g. PyTorch3D) on top of CUDA 12.1 has

been created and available online at https://hub.docker.com/repository/docker/

thanosch/mmtorch.
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Appendix B

Code Structure

The repository of the developed codebase as part of this work is available online at

https://github.com/charisoudis/M3C. The code is structured as follows:

– config: Configuration files YAML format. Entire pipeline configuration is stored

under the pipeline subpath wherein each the execution graph is described and

import to individual models are used to include other config files in a nested

manner.

– data: All datasets’ files aswell as TORCH_HOME path (such as PyTorch’s hubmodel

files) should reside or (symbolically) linked inside this directory. This way the

application can access training/evaluation data and PyTorch dependencies in a

clear and streamlined manner.

– src: Root path of all source code written or included as part of this work. This

sources path is divided into three high-level fancily-named modules:

— ants: Containing exclusively cloned repositories for codes of models we

use in the project. Those are grouped by release year and each is forked

form the original GitHub repository and edited in terms of import paths.

Some, such as the DPVO’s repo [54], have more modifications; we exclude

all paths inside ants when running code statistics (e.g. LOC counting).

— aria: Core interfaces, building blocks, and utility classes and functions

all reside in this directory. In particular, interfaces and code structuring

stuff can be found inside aria/artifacts, while the main utility classes

such config readers, renderers, and detection processors are placed in
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APPENDIX B. CODE STRUCTURE

Statistic Value Description

LOC 15596 Total number of code lines in .py files
sLOC 10831 Source code lines (without blank lines)

sLOC (%) 69.44 Source code lines percentage
Comment Lines 3104 Comment lines inside .py files

Comment Lines (%) 19.90 Comment lines percentage
Blank Lines 1661 Blank lines inside .py files

Blank Lines (%) 10.65 Blank lines percentage

Table B.1: Code statistics of the developed codebase.

aria/bolts. Neural network sub-modules and components are placed in

aria/flux, whereas their full, higher-level, implementations are given in

aria/illuminate. Finally, dataset pre-processors and custom dataloaders

are jointly placed under aria/providers.

— artisan: This folder comprises logic code written as part of this project.

This includes the implementation of all defined execution nodes, the

trajectory creation, global regression and optimization executors, and

others. More information can be found in the code repository’s as well as in

each of the aforementioned sub-directories README.md files.

Some central statistics of the codebase that was developed exceeding 15.5K LOC, are

provided in Table B.1.
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