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Monocular Dynamic Motion Capture

Given a video:

- monocular (single view)

- without marker data

- uncalibrated camera

- in-the-wild

can we recover articulated
meshes and motion in a fixed
coordinate frame in 3D?
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Why Monocular Motion Capture

✓ Industries directly interested:
- Sports
- Games/Animation
- AR/VR
- Autonomous driving
- Fashion

✓ Behaviour modelling & understanding

✓ Solving such a highly-complex problem is interesting in itself
(identifiability, occlusions, interlaced camera motion, in-the-wildness,
etc)
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Why Markerless: Less Effort & Money

Optical Markers3D Scan 2D Image

Figure 1: Possible input modalities for human motion capture, in decreasing
complexity and equipment cost.
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Why In The Wild: Increased Diversity

Figure 2: Randomly selected frames from scenes of 3DPW dataset[21].
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Modelling Humans in 3D: Body Surface Only

[Ideally] model bones, joints, muscles, tissues, and skin (inside → out)

[Practice] only able to scan the outer body surface using 3D scanners

Figure 3: 3D body scanner from 3dMD (left). Registered meshes (right).
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Modeling Humans in 3D: Overview of Methods

based on blend skinning1

vertex-based deformations

linear blending

global pose influence

SMPL[13] SMPL-X[16] STAR[15]

GHUM[23]

SCAPE[2]

DeepHuman[26]

CMR[9]

NASA[3]

yes

yes

yes

yes no

no

no

no

1Blend skinning is a skeleton-based deformation method, where mesh vertices are
attached to joints via a set of weights[14].
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Modeling Humans in 3D: The SMPL Parametric Model[13]

SMPL
a learned model of human body

shape and pose-dependent shape
variation from 3D scans

• template-based
• blend-skinning
• linear in shape & pose-

corrective[11] blend shapes
• differentiable

SMPL Model

f(θ, β; T, S, P)
3Nverts

θ, β

S = space of shape 
blend shapes

P = space of pose corre- 
ctive blend shapes

T = average mesh
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Modeling Humans in 3D: Fitting SMPL to Data

3D shape models enable the inference of object shape from noisy or
ambiguous 2D/3D data.[5]

Figure 4: Fitting SMPL models to different input modalities.
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Camera Is Moving: Motion Disentanglement Necessary

Human Motion

...

Camera Motion
Camera Motion

ESTIMATE

Human Motion
ESTIMATE

Figure 5: We observe the sum of human and camera motions. To
disambiguate and recover human motion, camera’s trajectory needs to be
estimated.
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Our 4-Stage System: Frame - Patch - SMPL - Track
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Frame-Level Processing
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Identifying Humans and Genders I

To identify humans in the input frames we employ the following visual
learners:

- Co-DETR[27] (236M params): based on Vision Transformers
detects human subjects

- ConvNextV2[22] (108M params): based on convnets detects and
segments human instances

- MiVOLO[10] (96M params): based on Vision Transformers detects
human subjects and associated genders

The detections are aggregated based on IoU, resulting in robust human
identification.
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Identifying Humans and Genders II

Figure 6: Output of frame-level processing nodes. From left to right: input,
object detection, instance segmentation, gender, and depth estimation.
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Patch-Level Operations
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2D Pose Detection

2

41

50

3

21 2223

6

0

0

1

4

7

1011

12

12

12
15

16 1819 2017

13

13

14

14

15168

9

10 10

11

119 9

5

6 78 5

3

2

12
4 3

7
86

13

Figure 7: Different 2D pose formats: SMPL, COCO17[12], MPII14[1].

- Global motion recovery sensitive to detected 2D pose (main
driving signal).

- ViTPose[24] (308M params): based on Vision Transformers
detects 17 keypoints (COCO17 format).
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SMPL Parameters Estimation
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Figure 8: HMR 2.0[4], a network based on Vision Transformer for Human Mesh
Recovery. θ, β are for SMPL, while π contains relative offsets from principal
point and distance from camera.
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Patch-Level Detections

Figure 9: Output of patch-level processing nodes. From left to right: female
patch (squarified), estimated 2D pose COCO17 keypoints, projected SMPL
mesh and joints. Subject isolation is performed for the male subject.
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Human-Aware Visual Odometry

To estimate camera trajectory we use DPVO[20] (7M params). We
discourage sampling of patches inside human segmentation masks,
while we pre-compute depth to ease matching process and BA.
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Figure 10: DPVO maintains a patch-to-frame association graph, which is
processed to incrementally estimate camera poses. The output contains
absolute values centered around the initial pose.
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SMPL-Level Operations
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Appearance-Aware Human Tracking

We use the PHALP[17] (23M params) tracker to re-identify humans.
Extends DeepSORT’s state with SMPL pose, mesh location and
regressed texture.

frame t frame t+1

HMR 2.0 HMR 2.0

We achieve 1.08x and 1.20x IDs on 3DPW train and test sets.
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Contacts and Ground Plane Estimation

To identify humans in the input frames we employ the following visual
learners:

- BSTRO[6] (243M params): based on SMPL pose and visual cues, it
estimates per-vertex contact probabilities. We pool those using
k-NN to get ankles and toes’ contacts.

- Ground Plane: By clustering feet vertices in contact and
iteratively merging planes we estimate local ground planes.
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SMPL-Level Node Outputs

Figure 11: Top: input, SMPL fits, contacts, and ground estimation. Bottom:
appearance-aware tracking and textures visualization.
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Camera-Local vs. Global Estimation

Camera View (local) World View  (global)

Figure 12: Input, camera-local, and global SMPL mesh placement [7].

The focus of this project, is lifting the camera-local human tracks to
global frame.
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Regression vs. Optimization Based Inference
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Figure 13: Estimating SMPL Parameters from monocular cues.
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Combining Regression and Optimization for Local Inference

Input Image

CNN

Regressed shape

SMPLify

Optimized shape

Initial step · · · · · · Final step

Θreg Θopt

Iterative fitting on 2D joints

||Θreg−Θopt||

Figure 14: SPIN[8] uses a visual regressor of SMPL parameters to initialize the
hand-crafted optimization loop that follows.
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Global Motion Recovery using Regression
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Figure 15: WHAM[19] combines camera-local regression with motion
disambiguation in an end-to-end trainable network, yielding SOTA motion
results. Re-projection errors are high though.

In this work, we use a modified version of WHAM to initialize the global
optimization loop.
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Global Motion Recovery using Optimization
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Figure 16: SLAHMR[25] disentangles camera from human motion iteratively, by
optimizing skeleton re-projection errors and motion realism[18]. Sensitive to
initialization and loss formulation.

In this work, we use a global motion optimization recipe inspired from
SLAHMR.
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Methodology In A Nutshell

1 Identify Humans in the Video
object detection, tracking, texture-based reID

2 Infer Camera-Local Human Meshes
initial regression of SMPL parameters

3 Infer Camera Poses
single camera (monocular), visual odometry

4 Lift Local Tracks to Global
motion semantics, re-projection consistency, global motion smoothness
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Methodology In Detail
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Global Motion Lifting Using Regression and Optimization

PIXEL-DERIVED
INFORMATION

Τ 
frames

2D

LOCAL
TRACKS

GLOBAL MOTION
REGRESSOR

Global
Trajectory
Decoder

2D Motion
Encoder

Global
Trajectory

Refiner

Γ0

τ0

Γ  
τ

CBSTRO Est. ContactsTDPVO Est. Camera

(p)

(p)

(p)

(p)
(p)

GLOBAL MOTION 
OPTIMIZATION

⟳

MULTI-HUMAN  
GLOBAL

TRAJECTORIES SMPL
2D Pose

- 2D Keypoints Reprojection

- Shape and Pose Priors

- SMPL Parameter Smoothness

- Camera Pose Smoothness

- Human Motion Prior (HuMoR)

Thanos Charisoudis KTH Royal Institute of Technology

Monocular Dynamic Motion Capture: A Regression-Optimization Hybrid Approach 40 / 49



Introduction Pixel-Derived Information Human Motion Recovery Our Method References

1 Introduction

2 Pixel-Derived Information

3 Human Motion Recovery

4 Our Method
Overview
Dataset
Results

5 References

Thanos Charisoudis KTH Royal Institute of Technology

Monocular Dynamic Motion Capture: A Regression-Optimization Hybrid Approach 41 / 49



Introduction Pixel-Derived Information Human Motion Recovery Our Method References

3D Poses In The Wild (3DPW)

• Challenging capturing setups with moving cameras
• Diverse human actions (e.g. walking, running, climbing, arguing)
• 61 scenes, 51K frames with ground-truth IMU and SMPL

annotations

Figure 17: Sample frame from 3DPW (left) and visualization of 2D poses
alongside camera-accurate, textured SMPL meshes.
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Evaluation Metrics I

1 Mean Per-Joint Position Error (MPJPE): average euclidean
distance (mm) between predicted and ground-truth joint
positions.

EMPJPE =
1
NJ

NJ∑
i=1

Jgt
i − Jpred

i
2

We compute this metric using NJ = 14 joints following MPII[1].

2 Procrustes Aligned Mean Per-Joint Position Error (PA-MPJPE):
accounts for potential rigid transformations between the
prediction and ground truth by estimating a similarity
transformation before calculating the error.
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Evaluation Metrics II

3 Mean Per-Vertex Error (PVE): average position error (mm) of the
mesh vertices

EPVE =
1
NV

NV∑
i=1

Vgt
i − Vpred

i
2

4 Acceleration Error (Acc): average difference (m/s²) of the joint
accelerations (computed using the recording FPS)

Agt
j = Jgt

j,1:Tp−2 − 2 × Jgt
j,2:Tp−1 + Jgt

j,3:Tp

Apred
j = Jpred

j,1:Tp−2 − 2 × Jpred
j,2:Tp−1 + Jpred

j,3:Tp

Acc =
1
NJ

NJ∑
i=1

Agt
i − Apred

i
2

× fps2
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Evaluation on 3DPW

Models
3DPW

PA-MPJPE MPJPE PVE Acc

HMR2.0 [4] * 44.4 69.8 82.2 18.1
WHAM [19] * 37.2 59.4 71.0 6.9
SLAHMR [25] * 55.9 - - -

Local 48.1 70.2 90.8 17.8
Global Regr 43.1 74.5 101.1 7.2
Global Opt 49.7 59.9 74.4 9.1
Global Regr + Opt 43.4 64.1 74.3 7.6

Table 1: Global motion estimation metrics on 3DPW [21] aggregated across all
dataset scenes. The metrics denoted with * are taken from original papers.
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Qualitative Results
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(b) Global Regresion (c) Global Regresion + Optimization

Figure 18: Visualization of the recovered human motion. The backgrounds
corresponding to the last frame are used; transparency indicates track age.
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Discussion

• Qualitative results highlight the necessity of lifting local tracks to
a fixed global frame.

• Global lifting using regression (b) results in smooth motions
sacrificing consistency with visual cues.

• Further optimization of the global trajectory (c) results in better
projection consistency and smoother mesh translations relative
to the world frame.

• Regression enables efficient initial global motion estimate, while
hand-crafted optimization reduces non-PA reconstruction errors
by optimizing re-projection and motion criteria. We have showed
that their combination leads to effective global motion recovery.
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