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INTRODUCTION

Machine Learning (ML) models boast such predictive
capabilities that hearing a novel or updated model that
broke yet another benchmark really comes as no surprise.
This is largely due to the surge of research the field
enjoys, accompanied by constant advances in computer
hardware. However, there remains a crucial question to be
answered: To what extent can we trust these models? While
being firmly convinced that machine intelligence constitutes
the predominant direction in which solutions to several
problems shall be searched, in this essay I will present my
ideas on why blindly trusting ML models would not account
for wise choice, yet.

During recent years, ML models such as Deep Neural
Networks (DNN) relentlessly evolve, being found nowadays
at the heart of numerous applications, ranging from Com-
puter Vision and object detection up to Natural Language
Processing and Understanding - in key areas like medicine
and justice. In some cases, such as image classification,
machines have exhibited performance better or on par with
humans [6], [9] (at least in the absence of distortions [16]
and low-SNR signals [17]). But as these models evolve, the
more complex they become, making the task of understand-
ing them and verifying their outputs more and more difficult.
This, in turn, makes these models less trustworthy, posing
a hurdle to their widespread adoption.

DEfiNITION AND IMPORTANCE OF EXPLAINABILITY IN MACHINE
LEARNING MODELS

The process of explaining what learned models predict
is itself an intricate one - it even lacks a concrete definition
[14]. Nevertheless, there are increasingly more efforts in
understanding what models - especially the ones trained
in a supervised manner - predict and how they learn.
This is also depicted in the Google Trends plot of the
keyword "explainable ai" (figure 1) and is grounded on
the strong correlation between a model’s "transparency"
(i.e. user explainability [7]) and its trustworthiness when
applied to real-world scenarios and tasks [4], [15]. In what
follows and according to [14], model explainability (or in-
terpretability which is used interchangeably in this essay)
is defined with respect to two principal desired properties,
namely Transparency and Post-hoc Interpretability. Although

Figure 1: Google Trends plot for searches relating to the term "ex-
plainable ai". The thick trendline reveals the constantly-increasing
interest of the research community around the Explainability and
Interpretability of ML models.
Source: Google Trends, Google Inc. (https://trends.google.com)

the former ensures an intuitive explanation of the model’s
output and operations, it is so constraining considering the
size and complexity of today’s models, that the focus is
almost exclusively on the latter to interpret machine/deep-
learning models resembling black-boxes.

Before proceeding in reviewing some of the prevailing
techniques in interpreting black-box models (i.e. Post-hoc
interpretability), it would be worth noting some cases where
trained models can be considered transparent and therefore
trustworthy by design. Models that fall in this category
are principally simple machine-learning models, such as
linear regressors (e.g. the constrained least-squares or
lasso regressor as in [3]) and simple decision trees that
have been long-thought as more interpretable compared to
deep neural networks. Classification trees [1] as another
example are not only readily interpretable (since labels
can be recursively assigned to all intermediate nodes, and
therefore an explanation can be produced for every output
by following the path and echoing labels) but may also help
in inferring causal relationships in observational variables
[18].

POST-HOC INTERPRETABILITY OF TRAINED MODELS
Rocketing of computing performance that modern paral-

lelization hardware has allowed, has made machine learn-
ing models - particularly deep learning models - resemble
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black boxes. Under no circumstances, however, should we
categorize these models as not interpretable by default
because doing so is like admitting that a great portion
of today’s frontiers in machine learning success and ap-
plicability should not be considered reliable. Consequently,
many methods have been proposed in assessing model
interpretability after the training phase (i.e. post-hoc) and
without much digging into the lower-level mechanics of the
model. Two major such groups of techniques are presented
in the succeeding paragraphs, wherein the use of DNN
as template models is assumed since the representations
learned by such models are often incomprehensible to
humans.

Explanations along with Model Outputs
Using surrogate models to explain predictions of deep

networks has been a prevalent interpretability technique at
the early stages of their adoption, remaining until today an
important way to validate models and enhance their relia-
bility. Initial endeavors exploited the explainability power of
decision trees. In one such work, Craven et al. proposed
at 1996 TREPAN [2], a method that uses a trained neural
network as a black-box for extracting comprehensible, sym-
bolic representations of how the model makes predictions.
A more recent example of explainability with surrogate
models was the joint training of a reinforcement learner and
a Recurrent Neural Network (RNN) proposed by Kerning et
al. [13]. In their approach, the learner model was trained to
minimize an objective function while the RNN was used to
map the model’s state into a textual explanation describing
the followed strategy.

Probably a milestone in black-box model interpretability
was a general technique proposed by Bach et al. for
explaining predictions of Convolutional Neural Networks
(CNN), known as Layer-wise Relevance Propagation (LRP)
[10], [11], where the graph structure of DNN was exploited. In
particular, after the output for a given image was computed
they back-propagated the prediction scores to find which
parts of the input image chiefly affected those scores.
As can be seen in the figure 1, this technique provides
valuable insights on how the predictions on a per-sample
basis are made, thus helping in model validation and trust
establishment.

Feature Visualizations of CNN
Another set of techniques to generate Post-hoc interpre-

tations is focused on searching the input space to retrieve
samples that maximize the activations of certain neurons or
layers of DNN. Trained CNN, for instance, are known to be
feature extractors [12], and therefore maximizing activation
of learned convolutional filters is equivalent to finding
features in observations that are recognized by those filters.
Probably the most popular method for visualizing what
image classifiers have learned is Activation Maximization
[5], [8].

Activation Maximization fixes the weights of the entire
network and tries to update the input image (i.e its pixel

(a) Sample Input to a CNN image
classifier

(b) Heatmap from relevance
propagation of "ladybug" score

Figure 2: LRP demo on image classification. The right image,
resulting from LRP, contributes significantly in understanding how
the model reached its prediction, making it more easily verifiable
and more user-friendly.
Source: Explainable AI Demos, Fraunhofer Institute for Telecom-
munications (https://lrpserver.hhi.fraunhofer.de)

Figure 3: Visualization of the input image that maximizes activa-
tion of a particular neuron of a MNIST digits CNN classifier. It can
be clearly seen that this particular neuron gets mostly activated
when an image of the digit "2" enters the network. Activation-
maximization here is employed in order to understand how the
CNN classifier makes predictions.
Source: "Class activation maps: Visualizing neural network
decision-making", Medium post by Anil Chandra Naidu Matcha,
2019

values) such that activation at a particular layer of the CNN
is maximized. The basic idea is that by knowing what input
maximally activates a layer, we may interpret and extract
information on what this layer is trying to capture and
consequently explain the model’s output. This technique is
better illustrated in the figure 3, where a specific neuron of
a CNN classifier was found to by maximally active when
an image of the digit "2" is given as input.

CONCLUSION

As more and more ML systems are being deployed in
real-world applications and processes, the need for more
transparent - or ideally self-explained - models is becoming
apparent. And while the aforementioned methods for black-
box interpretability have helped in extracting information
on how models learn and predict there are still several
limitations that prevent us from being confident enough
that learned models decide in the same way a human does
and that algorithmic errors or bias in ML have perished. All
in all, I am inclined to believe that research in explainable
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AI has to progress at the same pace as the one in the ML
itself, so as for trustful and reliable models to be developed
and to supersede humans in critical decision processes.
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ACRONYMS
AI Artificial Intelligence.
CNN Convolutional Neural Networks.
DNN Deep Neural Networks.
LRP Layer-wise Relevance Propagation.
ML Machine Learning.
MNIST Modified National Institute of Standards and Technology.
RNN Recurrent Neural Networks.
SNR Signal-to-Noise Ratio.
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